• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of New Sensing Technologies toward Non-Invasive Nucleic Acid Analysis / 非侵襲的核酸解析に向けた新たな検出法の開発 / ヒシンシュウテキ カクサン カイセキ ニ ムケタ アラタナ ケンシュツホウ ノ カイハツ

Narita, Atsushi 24 March 2008 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第13791号 / 工博第2895号 / 新制||工||1427(附属図書館) / 26007 / UT51-2008-C707 / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 青山 安宏, 教授 森 泰生, 教授 濵地 格 / 学位規則第4条第1項該当
2

Design, Synthesis and Physicochemical Analysis of Ruthenium(II) Polypyridyl Complexes for Application in Phototherapy and Nucleic Acid Sensing

Wachter, Erin Melissa 01 January 2016 (has links)
Current chemotherapeutics exhibit debilitating side effects as a result of their toxicity to healthy tissues. Reducing these side effects by developing chemotherapeutics with selectivity for cancer cells is an active area of research. Phototherapy is one promising modality for selective treatment, where drug molecules are “turned on” when irradiated with light, reducing damage to healthy tissues by spatially restricting the areas exposed to irradiation. A second approach to improve selectivity is to exploit the differences in cancerous versus healthy cells, such as increased metabolism and/or upregulation of cell surface receptors. Ruthenium(II) polypyridyl complexes are candidates for phototherapy due to their highly tunable photophysical and photochemical properties. The addition of strain to the metal center is a general approach used to render complexes susceptible to light-induced ligand loss. Upon ejection of a ligand, the Ru(II) center is capable of covalently binding biomolecules within cells to produce a cytotoxic effect. The ligands surrounding the metal center are amenable to chemical modification through the incorporation of pendent functional groups as chemical “handles”, allowing for different directing molecules to be attached. Nucleic acids are important targets for drug discovery, and the development of selective probes to either visualize or selectively damage nucleic acids within the cell is an ongoing area of research. Specifically, G-rich regions are abundant in the human genome, and the presence of G-quadruplexes in telomeres and promoter regions of oncogenes make them potential therapeutic targets. Ru(II) complexes are known to bind nucleic acids, and some have been shown to induce and/or stabilize G-quadruplex Structures. Multiple series of Ru(II) compounds have been synthesized and tested to improve the functional range for Ru(II) complexes for in vivo applications, where they act as “light switches” for DNA. These molecules are “off” when in an aqueous environment but turned “on” in the presence of DNA. Several hit compounds were identified that showed selectivity for specific G-quadruplex structures.

Page generated in 0.0993 seconds