• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis und Numerik linearer differentiell-algebraischer Gleichungen

Kunkel, Peter, Mehrmann, Volker 30 October 1998 (has links) (PDF)
In Analysis and Numerik differential-algebraischer Gleichungen P. Kunkel and V. Mehrmann give a survey of relevant conditions for consistent systems, for existence and uniqueness of solutions, and touch numerical procedures for obtaining the solutions.
2

Pricing American options using approximations by Kim integral equations

Sheludchenko, Dmytro, Novoderezhkina, Daria January 2011 (has links)
The purpose of this thesis is to look into the difficulty of valuing American options, put as well as call, on an asset that pays continuous dividends. The authors are willing to demonstrate how mentioned above securities can be priced using a simple approximation of the Kim integral equations by quadrature formulas. This approach is compared with closed form American Option price formula proposed by Bjerksund-Stenslands in 2002. The results obtained by Bjerksund-Stenslands method are numerically compared by authors to the Kim’s. In Joon Kim’s approximation seems to be more accurate and closer to the chosen “true” value of an American option, however, Bjerksund-Stenslands model is demonstrating a higher speed in calculations.
3

Analysis und Numerik linearer differentiell-algebraischer Gleichungen

Kunkel, Peter, Mehrmann, Volker 30 October 1998 (has links)
In Analysis and Numerik differential-algebraischer Gleichungen P. Kunkel and V. Mehrmann give a survey of relevant conditions for consistent systems, for existence and uniqueness of solutions, and touch numerical procedures for obtaining the solutions.
4

Řešení úloh dynamiky těles pomocí matematických softwarů / Application of numerical procedures for solution of dynamics problems

Pučegl, Pavel January 2010 (has links)
Discussion of the application of mathematical softwares for the determination of frequency characteristics of mechanical systems
5

Algorithms for computing the optimal Geršgorin-type localizations / Алгоритми за рачунање оптималних локализација Гершгориновог типа / Algoritmi za računanje optimalnih lokalizacija Geršgorinovog tipa

Milićević Srđan 27 July 2020 (has links)
<p>There are numerous ways to localize eigenvalues. One of the best known results is that the spectrum of a given matrix ACn,n is a subset of a union of discs centered at diagonal elements whose radii equal to the sum of the absolute values of the off-diagonal elements of a corresponding row in the matrix. This result (Ger&scaron;gorin&#39;s theorem, 1931) is one of the most important and elegant ways of eigenvalues localization ([63]). Among all Ger&scaron;gorintype sets, the minimal Ger&scaron;gorin set gives the sharpest and the most precise localization of the spectrum ([39]). In this thesis, new algorithms for computing an efficient and accurate approximation of the minimal Ger&scaron;gorin set are presented.</p> / <p>Постоје бројни начини за локализацију карактеристичних корена. Један од најчувенијих резултата је да се спектар дате матрице АCn,n налази у скупу који представља унију кругова са центрима у дијагоналним елементима матрице и полупречницима који су једнаки суми модула вандијагоналних елемената одговарајуће врсте у матрици. Овај резултат (Гершгоринова теорема, 1931.), сматра се једним од најзначајнијих и најелегантнијих начина за локализацију карактеристичних корена ([61]). Међу свим локализацијама Гершгориновог типа, минимални Гершгоринов скуп даје најпрецизнију локализацију спектра ([39]). У овој дисертацији, приказани су нови алгоритми за одређивање тачне и поуздане апроксимације минималног Гершгориновог скупа.</p> / <p>Postoje brojni načini za lokalizaciju karakterističnih korena. Jedan od najčuvenijih rezultata je da se spektar date matrice ACn,n nalazi u skupu koji predstavlja uniju krugova sa centrima u dijagonalnim elementima matrice i poluprečnicima koji su jednaki sumi modula vandijagonalnih elemenata odgovarajuće vrste u matrici. Ovaj rezultat (Geršgorinova teorema, 1931.), smatra se jednim od najznačajnijih i najelegantnijih načina za lokalizaciju karakterističnih korena ([61]). Među svim lokalizacijama Geršgorinovog tipa, minimalni Geršgorinov skup daje najprecizniju lokalizaciju spektra ([39]). U ovoj disertaciji, prikazani su novi algoritmi za određivanje tačne i pouzdane aproksimacije minimalnog Geršgorinovog skupa.</p>

Page generated in 0.0904 seconds