• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and Validation of a Numerical Tool for the Aeromechanical Design of Turbomachinery

Mayorca, María Angélica January 2010 (has links)
In aeromechanical design one of the major rules is to operate under High Cyclic Fatigue (HCF) margins and away from flutter. The level of dynamic excitations and risk of HCF can be estimated by performing forced response analyses from blade row interaction forces or Low Engine Order (LEO) excitation mechanisms. On the other hand, flutter stability prediction can be assessed by calculation of aerodynamic damping forces due to blade motion. In order to include these analyses as regular practices in an industrial aeromechanical design process, interaction between the fields of fluid and structural dynamics must be established in a rather simple yet accurate manner. Effects such as aerodynamic and structural mistuning should also be taken into account where parametric and probabilistic studies take an important role. The present work presents the development and validation of a numerical tool for aeromechanical design. The tool aims to integrate in a standard and simple manner regular aeromechanical analysis such as forced response analysis and aerodynamic damping analysis of bladed disks. Mistuning influence on forced response and aerodynamic damping is assessed by implementing existing model order reduction techniques in order to decrease the computational effort and assess results in an industrially applicable time frame.  The synthesis program solves the interaction of structure and fluid from existing Finite Element Modeling (FEM) and Computational Fluid Dynamics (CFD) solvers inputs by including a mapping program which establishes the fluid and structure mesh compatibility. Blade row interaction harmonic forces and/or blade motion aerodynamic damping forces are inputs from unsteady fluid dynamic solvers whereas the geometry, mass and stiffness matrices of a blade alone or bladed disk sector are inputs from finite element solvers. Structural and aerodynamic damping is also considered. Structural mistuning is assessed by importing different sectors and any combinations of the full disk model can be achieved by using Reduced Order Model (ROM) techniques. Aerodynamic mistuning data can also be imported and its effects on the forced response and stability assessed. The tool is developed in such a way to allow iterative analysis in a simple manner, being possible to realize aerodynamically and structurally coupled analyses of industrial bladed disks. A new method for performing aerodynamic coupled forced response and stability analyses considering the interaction of different mode families has also been implemented. The method is based on the determination of the aerodynamic matrices by means of least square approximations and is here referred as the Multimode Least Square (MLS) method. The present work includes the program description and its applicability is assessed on a high pressure ratio transonic compressor blade and on a simple blisk. / QC 20110324 / Turbopower / AROMA
2

Development and Validation of a Numerical Tool for theAeromechanical Design of Turbomachinery

Mayorca, María Angélica January 2010 (has links)
<p>In aeromechanical design one of the major rules is to operate under High Cyclic Fatigue (HCF) margins and away from flutter. The level of dynamic excitations and risk of HCF can be estimated by performing forced response analyses from blade row interaction forces or Low Engine Order (LEO) excitation mechanisms. On the other hand, flutter stability prediction can be assessed by calculation of aerodynamic damping forces due to blade motion. In order to include these analyses as regular practices in an industrial aeromechanical design process, interaction between the fields of fluid and structural dynamics must be established in a rather simple yet accurate manner. Effects such as aerodynamic and structural mistuning should also be taken into account where parametric and probabilistic studies take an important role.</p><p>The present work presents the development and validation of a numerical tool for aeromechanical design. The tool aims to integrate in a standard and simple manner regular aeromechanical analysis such as forced response analysis and aerodynamic damping analysis of bladed disks.</p><p>Mistuning influence on forced response and aerodynamic damping is assessed by implementing existing model order reduction techniques in order to decrease the computational effort and assess results in an industrially applicable time frame.  The synthesis program solves the interaction of structure and fluid from existing Finite Element Modeling (FEM) and Computational Fluid Dynamics (CFD) solvers inputs by including a mapping program which establishes the fluid and structure mesh compatibility. Blade row interaction harmonic forces and/or blade motion aerodynamic damping forces are inputs from unsteady fluid dynamic solvers whereas the geometry, mass and stiffness matrices of a blade alone or bladed disk sector are inputs from finite element solvers. Structural and aerodynamic damping is also considered.</p><p>Structural mistuning is assessed by importing different sectors and any combinations of the full disk model can be achieved by using Reduced Order Model (ROM) techniques. Aerodynamic mistuning data can also be imported and its effects on the forced response and stability assessed. The tool is developed in such a way to allow iterative analysis in a simple manner, being possible to realize aerodynamically and structurally coupled analyses of industrial bladed disks. A new method for performing aerodynamic coupled forced response and stability analyses considering the interaction of different mode families has also been implemented. The method is based on the determination of the aerodynamic matrices by means of least square approximations and is here referred as the Multimode Least Square (MLS) method.</p><p>The present work includes the program description and its applicability is assessed on a high pressure ratio transonic compressor blade and on a simple blisk.</p> / Turbopower / AROMA
3

Implementation And Validation Of Loss Prediction Methods To An Existing One Dimensional Axial Turbine Design Program

Guedez, Rafael January 2011 (has links)
One of the early steps in axial turbine design is the use of one-dimensional (1D) mean line calculations to predict the turbine performance and estimate the principal geometric parameters, such as radius and blade heights, that will be needed in further computational fluid dynamic (CFD) studies. This 1D analysis is based on the estimation of the aerodynamic losses expressed as a function of simple blade parameters and the velocity triangles. In this regard, there exist different loss correlations widely used in literature to estimate these losses but at the same time there is a lack of information regarding differentiation between them. Thereafter, the objective in this work was to judge and compare the behaviors of the Kacker- Okapuu, Craig-Cox and Denton loss correlations, all of them widely-used in turbine performance prediction. Present work shows the implementation of these different loss correlations on an existing 1D mean line numerical tool, LUAX-T. Subsequently, once implemented, the correlations were compared and analyzed by the use of a validation process and performing a parametric study. The results show that similar key parameters such as the flow turning, solidity and aspect ratio rule the different loss mechanisms in each correlation. On the other hand, the parametric study shows that the correlations are in agreement with the theory and give similar trends for performance prediction even though they all predict different values of efficiency for the same turbine stage. Moreover, the validation process show the correlations were found to be accurate enough when comparing against two different sets of experimental data. However, it was also proved that the models are only accurate if used within the range of applicability they were developed for, hence a complete knowledge of the limitations of each correlation should be known prior to using them. Finally, the extension of the one-dimensional mean line numerical tool LUAX-T will serve to perform further studies related to turbine design, as there are very few non-confidential turbomachinery design tools available for teaching or researching. Furthermore, a parametric study tool was also developed as part of the program. This last extension and the loss implementation codes are described in this work.

Page generated in 0.0764 seconds