151 |
Sequencing Batch Moving Bed Biofilm Reactors for Treatment of Cheese Production WastewaterTsitouras, Alexandra 14 May 2021 (has links)
Discharging cheese production wastewater with high concentrations of organics and nutrients is detrimental to receiving aquatic systems, as the release of these deleterious substances cause oxygen depletion, and eutrophication respectively. On-site treatment of cheese production wastewater requires the removal of high concentrations of organics and nutrients with a small land footprint to meet regulations. There is therefore a critical need for compact, high-rate, cost-effective wastewater technologies such a as the moving bed biofilm reactor (MBBR). Although MBBR systems have been well established for carbon and nitrogen removal, to date only a limited number of studies have achieved enhanced biological phosphorous removal in sequencing batch moving bed biofilm reactor (SB-MBBR) systems, and only for municipal-strength wastewater. Operating SB-MBBR systems under sequencing batch mode enables the reactor operation to be well synced to the fluctuating influent concentrations and flow characteristics of cheese production wastewaters. Furthermore, cycling between anaerobic and aerobic conditions can be achieved in a single sequencing batch reactor, which can promote the proliferation of poly-phosphate accumulating organisms. The SB-MBBR is studied in this research for the removal of carbon, nitrogen, and phosphorous from cheese production wastewaters. Specifically, the effects of anaerobic staging time, aeration rate, enhanced aerobic operation, and adding a second reactor in series was studied by analyzing the kinetics, biofilm characteristics, and microbiome. Extending the anaerobic staging time was shown to achieve aerobic soluble chemical oxygen demand removal rates of 92.5±2.8 g·m⁻²d⁻¹, by selecting for a thinner biofilm with, with a lower biofilm dry-density and a more rough biofilm surface, and therefore likely a biofilm with an enhanced mass transport. A significant shift in the microbiome was observed with longer anaerobic staging times and lower aeration, whereby possible putative poly-phosphate accumulating organisms including Brachymonas, and Dechloromonas were selected for in greater relative abundances compared to anaerobic bacteria. The total phosphorous removal in the possibly resulted from enhanced biological phosphorous removal, supported by the high abundance of putative poly-phosphate accumulating organisms (43.1±8.4%), which dominated the biofilms in the SB-MBBRs with 120 and 168 minute anaerobic staging times. Finally, total ammonia nitrogen oxidation was achieved through partial nitritation with a two reactor in series configuration with a removal rate of 1.07±0.05 g-N·m⁻²d⁻¹. Two SB-MBBRs operated in series was shown to be the superior strategy for achieving TAN compared to a single SB-MBBR with extended aerobic operation. By operating two SB-MBBRs in series, competition between autotrophic nitrifiers and heterotrophs is averted, and AOB proliferate in the biofilm, achieving TAN oxidation. Since TAN oxidation is likely achieved through partial nitrification, the SB-MBBR technology may be incorporated in a deammonification treatment train. The overall study presents novel information for the SB-MBBR design and operation, along with biofilm and microbiome fundamental findings that will guide future pilot- and full-scale applications of the SB-MBBR to treat cheese production wastewater.
|
152 |
Nutrient and Antinutrient Content of an Underexploited Malawian Water Tuber Nymphaea petersiana (Nyika)Chawanje, Chrissie Maureen 14 December 1998 (has links)
Nymphaea petersiana Klotzsch (Nyika) is an important wild tuber eaten in some districts of Malawi. The tubers were processed by boiling/freeze-drying(BFD) and sun-drying(USD). The tuber's nutrient and antinutrient composition was determined to produce a preliminary nutrient data base for use in sub-Saharan Africa.
There was no significant difference (P > 0.05) in protein content of BFDand USD samples. Sun-dried samples were significantly (P < .05) higher in ash than boiled samples while boiled samples were significantly higher (P < .05) in crude fat and total carbohydrate. The protein content of the tubers (8.0 and 8.1 %) was higher than that of the staple maize (7.9%), African millets (unspecified) (7.5%), and polished rice (7.0%), but lower than sorghum (10.7%). Protein content was higher than tubers like cassava (1.3%), potato (2%), sweet potato (1.6%), yams (1.5%) and N. lotus (5.2). Nyika tubers have a well balanced amino acid content, limiting only in lysine.
There were no significant (P > 0.05) differences in the mineral content of BFD and USD samples, except for iron, which was lower in the boiled samples. Nyika tubers have a higher calcium (1376 and 946 ug/g) and phosphorus (2250 and 2883 ug/g ) content than wild and domesticated cassava, potatoes, sweet potatoes and wild and domesticated yams. Sun-dried tubers have a higher iron content (88ug/g) than maize (20ug/g). The zinc content of tuber was higher (21and 25ug/g) than that of boiled maize flour, boiled sorghum flour, rice, cassava, and sweet potato. The predominant fatty acids in the tubers were oleic (47%), linoleic (32%), palmitic (21%) and linolenic (7%) acids. Ascorbic acid content was very low, only 0.1 and 0.003 mg/100g.
Tannin content was lower (1 and 1.7 %) in the tubers than in Vulgare Pers. sorghum, DeKalb sorghum from U.S. and Kabale sorghum from Uganda. There was a significantly (P < 0.05) lower content of phytate in boiled (3.9ug/g) than in sun-dried tubers (6.0 ug/g). Phytate content of the tubers was lower than that of cooked maize flour, unrefined maize flour, cassava and sweet potato. Trypsin inhibitor activity in the tubers was reduced from 463 to 55 TIU/g tuber and chymotrypsin inhibitor activity was reduced to 50 from 267 CIU/g tuber by cooking.
Nyika is a good source of iron and quality protein limiting only in lysine. Protein is comparable to staple maize and higher than root crops consumed in Malawi. It is not a good source of fat and ascorbic acid. Tannin, phytate, trypsin, and chymotrypsin inhibitor content lower than most food crops consumed in Malawi. / Ph. D.
|
153 |
The Development and Evaluation of a Nutrient Density Based Nutrition Education Program for Elementary SchoolsBrown, Guendoline 01 May 1977 (has links)
A behavioral objective based nutrition education program for kindergarten through sixth grade which allowed nutrition education to be integrated into existing classroom programs was developed and evaluated. A nutrient density approach served as the conceptual framework for the program. Nutrient density evaluates the nutrient content of a food in relationship to the caloric content. Materials for student use, teacher use and teacher training were developed.
The program was evaluated in 27 classrooms in nine public elementary schools in Utah and Idaho with 806 student participants. Pre-and post tests as well as classroom evaluations were conducted. Students, teachers and parents indicated that positive cognitive, attitudinal and behavioral effects resulted from the program.
|
154 |
Consumer-Driven Nutrient Recycling in Arctic Alaskan Lakes: Controls, Importance for Primary Productivity, and Influence on Nutirient LimitationJohnson, Cody R. 01 May 2009 (has links)
In lakes, fish and zooplankton can be both sources and sinks of nitrogen (N) and phosphorus (P) through the consumption of organic N and P, and subsequent excretion of bioavailable inorganic forms. These source/sink dynamics, known as consumer-driven nutrient recycling (CNR), may, in turn, control the availability of potentially limiting nutrients for algal primary production. In this dissertation I investigate the importance and controls of CNR as a source of inorganic N and P for primary production (Chapter 2). I then examine zooplankton CNR as a mechanism for increasing nutrient mean resident time (MRT) in the mixed layer of lakes (Chapter 3). Finally, I assess whether zooplankton communities dominated by different taxa can affect N versus P deficient conditions for phytoplankton production through differential N and P recycling rates (Chapter 4). Direct excretion of N and P by fish communities was modest in arctic lakes, and accounted for < 4 % of the N and P required for primary production. Recycling of N and P by zooplankton communities was relatively high, and the fraction of algal N and P demand supplied by zooplankton CNR ranged from 4 - 90% for N and 7 - 107% for P. MRT of 15N, measured in the mixed layer of an arctic lake, was ~16 days, compared to 14 days predicted by a ecosystem model simulation with zooplankton N recycling and 8 days in a model simulation where zooplankton N recycling was absent. The 75% increase in N MRT between model simulations with and without zooplankton recycling suggests that zooplankton N recycling is an important mechanism for retaining N in lake ecosystems. I observed relatively high negative correlations between precipitation and phytoplankton N (r = -0.33) and P (r = -0.30) deficiencies. I also observed a significant positive correlation (r = 0.42, p = 0.03) between zooplankton communities with higher copepod biomass, relative to cladoceran biomass, and phytoplankton N-deficient conditions. These results suggest that when precipitation is high N and P deficiency is low in the phytoplankton. When precipitation is low, however, zooplankton communities composed primarily of copepods contribute to N-deficient conditions for phytoplankton production.
|
155 |
Functions of Wetland Plant Assemblages on Water Quality ImprovementWindham, Evelyn Louise 12 August 2016 (has links)
Studies have shown wetlands act as filters for nutrient rich waters, in part due to macrophyte properties. Differences have been found in nitrogen removal rates among plant species in studies of monocultures grown in mesocosms mimicking wastewater treatment constructed wetlands, but little research has been done on assemblages in natural or restored wetlands. This study aims to identify differences in water quality among plant assemblages in natural and restored wetlands. Thirty natural and restored wetlands in the Mississippi portion of the Mississippi Alluvial Valley were sampled four times. Water quality was measured and plant assemblages identified. Significant differences in pH, conductivity, and turbidity were found among four different plant growth forms, but nutrient concentrations were not significantly different among growth forms. Because nutrient concentrations were low, data collected may not have adequately captured potential differences in nutrient concentrations among plant assemblages.
|
156 |
Disconnect between Cancer Prevention Guidelines and Dietary Practices Stratified by Obesity Status in a National CohortHohol, Erica D. 06 August 2013 (has links)
No description available.
|
157 |
Improving Sustainable Fertilizer Practices for Pomegranate by Leaf Nutrient Concentration Evaluation and Fertilizer TrialsLe, Minh 01 December 2020 (has links) (PDF)
Fruit tree leaf nutrient concentrations are commonly used to determine fertilizer rates, but information is limited regarding nutrient requirements, seasonal N uptake and removal rates, and soil N dynamics for pomegranate. Relationships between fertilizer rates, leaf nutrient concentrations, fruit yield and quality were examined in five mature, commercial California ‘Wonderful’ pomegranate orchards. Site 1 was observed for two growing seasons (2018-2019) and sites 2-5 were observed for one season (2018 or 2019). In 2018, 150, 300, or 450 g N/tree was applied at sites 1-3 in a single application at early fruit development or in two equal applications at early and mid-season fruit development. In 2019, fertilizer rates were adjusted based on site-specific leaf nutrient analysis and crop load and applied at mid-season fruit development (158, 185, 225, 286, 392, or 625 g N/tree at site 1; 115, 130, 150, 175, 212, or 270 g N/tree at site 4; and 107, 122, 142, 171, 214, or 286 g N/tree at site 5). A randomized complete block design was used for all experiments. Leaves were collected from all data trees during early, mid-season and late fruit development and analyzed for leaf nutrient concentrations. At harvest, total fruit weight per tree and individual fruit weight and diameter were measured. Canopy volume was measured during the dormant season prior to pruning. Nitrogen partitioning, uptake and removal rates were studied by analyzing plant tissue, soil, and lysimeter water samples in 2019 at site 5. Fruit yield and average diameter varied significantly depending on site and fertilizer treatments. Average fruit yield per tree ranged from 5-90 kg fruit/tree (site 1: 78.5 kg fruit/tree in 2018 and 91.1 kg fruit/tree in 2019, site 2: 55.6 kg fruit/tree, site 3: 29.7 kg fruit/tree, site 4: 5.6 kg fruit/tree, site 5: 9.1 kg fruit/tree). Sufficiency ranges and significant relationships were determined between certain nutrients, including nitrogen and potassium, to fruit yield and diameter. Higher fertilizer treatments were associated with higher residual soil N compared to the low fertilizer treatments within the root zone (2.25-19.33 mg/L NO3-N) and below the root zone (2.25-9.17 mg/L NO3-N) suggesting a higher likeliness of nitrogen leaching with fertilizer applications exceeding the crop’s nitrogen demand. Overall, variability between sites in fertilizer treatment effects, leaf nitrogen concentrations, and yield suggests that setting site-specific yield goals based on estimated N uptake and removal is necessary to develop effective pomegranate fertilizer programs.
|
158 |
Sources of Atmospheric Dust Deposition on Utah LakeTelfer, Justin 10 March 2023 (has links)
Atmospheric deposition (AD) is a significant source of nutrient loading to waterbodies around the world. However, the sources and loading rates are poorly understood for major waterbodies and even less understood for local waterbodies. Utah Lake is a eutrophic lake located in central Utah, USA, and has high nutrient levels. Recent research has identified AD as significant sources for nutrient loading to the lake to better understand the dust AD sources, we sampled suspected source locations and collected deposition samples around the lake. We analyzed these samples using Inductively Coupled Plasma (ICP) for 25 metals to characterize their elemental fingerprints. We then compared the lake samples to the source samples to determine likely source locations. We computed spectral angle, coefficient of determination, multi-dimensional scaling, and radar-plots to characterize the similarity of the samples. We found that lake deposition samples were more similar to local sources than to distant sources. This suggests that the major source of atmospheric deposition onto Utah Lake is the local empty fields south and west of the lake and not the farther playa sources as previously suggested. Preliminary data suggest that dust AD is associated with dry, windy conditions and is episodic in nature. We show that AD from dust deposition is likely a small portion of the overall AD nutrient loading on Utah Lake, with the dry and precipitation source contributing the majority of the load.
|
159 |
Consequences of external factors on placental and offspring development and using melatonin as a potential therapeuticReid, Dana S. 06 August 2021 (has links)
Early life is critical for the development of an organism. External factors alter placental efficiency which can lead to consequential effects. The objective of the current study was to (1) examine placental characteristics and molecular factors affected by nutrient restriction (2) evaluate the mitigating properties of melatonin in a nutrient restricted pregnancy in regard to circadian, myogenic and adipogenic factors in fetal muscle and (3) evaluate the effects of prenatal and postnatal melatonin supplementation on offspring performance. In study 1, cows were fed a control (CON) or a 60% restricted (RES) diet from day 140 to 240 of gestation. Animals were slaughtered for placentome collection. Nutrient restriction increased vessel perimeter, downregulated genes related to blood vessel development, and upregulated ribosomal and translation factor expression. In lieu of downregulated vessel development, a compensatory effect geared towards nutrient-transport apparent. The 2nd study utilized spring-calving and fall-calving heifers in two trials with a 2 x 2 x 2 factorial design. Treatments were adequately-fed (ADQ) or 60% restricted (RES) dams along with melatonin (MEL) or no melatonin (CON) from day 160 to 240 of gestation. Cesarean sections were performed either in the morning (AM) or afternoon (PM). Circadian, myogenic and adipose-related factors in fetal loin muscle (LM) were analyzed. Fetal LM from the spring-calving (fall) group experienced a downregulation of circadian genes, myogenic genes and tendency for downregulation in lipolysis genes. Fetal LM collected from the fall-calving (summer) group had interactions in myogenic expression. Results demonstrate photoperiod and seasonal effects on nutrient restriction and melatonin supplementation in regard to tissue prioritization. In study 3, melatonin was supplemented to calves during the prenatal and postnatal period in a 2 x 2 factorial design. Supplementation did not alter offspring performance. A lack of differences may be attributed to similar endogenous melatonin levels in dams. Despite no differences in calf performance, tendencies for decreased milk yield and fat were observed in MEL versus CON dams. This demonstrates that melatonin may influence feed efficiency in calves that receive less nutrients during early life. The programming effects of melatonin after birth appear to be low.
|
160 |
Evaluating Opportunities to Improve Resource Efficiency of Conventional Wastewater Treatment Using the Alga Cladophora glomerataSzabo, Adam R. 27 September 2012 (has links)
No description available.
|
Page generated in 0.0815 seconds