• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automatisierte Objektidentifikation und Visualisierung terrestrischer Oberflächenformen / Automated object identification and visualisation of terrestrial landforms

Tyrallova, Lucia January 2013 (has links)
Die automatisierte Objektidentifikation stellt ein modernes Werkzeug in den Geoinformationswissenschaften dar (BLASCHKE et al., 2012). Um bei thematischen Kartierungen untereinander vergleichbare Ergebnisse zu erzielen, sollen aus Sicht der Geoinformatik Mittel für die Objektidentifikation eingesetzt werden. Anstelle von Feldarbeit werden deshalb in der vorliegenden Arbeit multispektrale Fernerkundungsdaten als Primärdaten verwendet. Konkrete natürliche Objekte werden GIS-gestützt und automatisiert über große Flächen und Objektdichten aus Primärdaten identifiziert und charakterisiert. Im Rahmen der vorliegenden Arbeit wird eine automatisierte Prozesskette zur Objektidentifikation konzipiert. Es werden neue Ansätze und Konzepte der objektbasierten Identifikation von natürlichen isolierten terrestrischen Oberflächenformen entwickelt und implementiert. Die Prozesskette basiert auf einem Konzept, das auf einem generischen Ansatz für automatisierte Objektidentifikation aufgebaut ist. Die Prozesskette kann anhand charakteristischer quantitativer Parameter angepasst und so umgesetzt werden, womit das Konzept der Objektidentifikation modular und skalierbar wird. Die modulbasierte Architektur ermöglicht den Einsatz sowohl einzelner Module als auch ihrer Kombination und möglicher Erweiterungen. Die eingesetzte Methodik der Objektidentifikation und die daran anschließende Charakteristik der (geo)morphometrischen und morphologischen Parameter wird durch statistische Verfahren gestützt. Diese ermöglichen die Vergleichbarkeit von Objektparametern aus unterschiedlichen Stichproben. Mit Hilfe der Regressionsund Varianzanalyse werden Verhältnisse zwischen Objektparametern untersucht. Es werden funktionale Abhängigkeiten der Parameter analysiert, um die Objekte qualitativ zu beschreiben. Damit ist es möglich, automatisiert berechnete Maße und Indizes der Objekte als quantitative Daten und Informationen zu erfassen und unterschiedliche Stichproben anzuwenden. Im Rahmen dieser Arbeit bilden Thermokarstseen die Grundlage für die Entwicklungen und als Beispiel sowie Datengrundlage für den Aufbau des Algorithmus und die Analyse. Die Geovisualisierung der multivariaten natürlichen Objekte wird für die Entwicklung eines besseren Verständnisses der räumlichen Relationen der Objekte eingesetzt. Kern der Geovisualisierung ist das Verknüpfen von Visualisierungsmethoden mit kartenähnlichen Darstellungen. / The automated object identification represents a modern tool in geoinformatics (BLASCHKE et al., 2012). In order to achieve results in thematic mapping comparable among one another, considering geoinformatics, means of object identification should be applied. Therefore, instead of fieldwork, multispectral remote-sensing data have been used as a primary data source in this work. Specific natural objects have been GIS-based and automatically identified and characterised from the primary data over large areas and object densities. Within this work, an automated process chain for the object identification has been developed. New approaches and concepts of object-based identification of natural isolated terrestrial landforms have been developed and implemented. The process chain is based on a concept that develops a generic approach to the automated object identification. This process chain can be customised for and applied to specific objects by settings of characteristic quantitative parameters, by which the concept of object identification becomes modular and scalable. The modul-based architecture enables use of individual moduls as well as their combinations and possible expansions. The introduced methodology of object identification and the connected characteristics of (geo)morphometric and morphologic parameters has been supported by a static procedures. These enable the comparability of object parameters from different samples. With the help of regression and variance analysis, relations between object parameters have been explored. Functional dependencies of parameters have been analysed in order to qualitatively describe the objects. As a result, automatically computed dimensions and indices of the objects can be captured as quantitative data and informations an applied to varied samples. Within this work the thermokarst lakes represent the basis for the process development and an example and a data basis for the design of the algorithm and analysis. The goevisualisation of multivariant natural objects has been applied to develop better understanding of their spatial relations. The essence of the geovisualisation is to link the methods of visualisation to map-like presentation.
2

Traffic Sign Recognition Using Machine Learning / Igenkänning av parkeringsskyltar med hjälp av maskininlärning

Sharif, Sharif, Lilja, Joanna January 2020 (has links)
Computer vision is an area in computer science that attempts to give computers the ability to see and recognise objects using varying sources of input, such as video or pictures. This problem is usually solved by using artificial intelligence (AI) techniques. The most common being deep learning. The project investigates the possibility of using these techniques to recognisetraffic signs in real time. This would make it possible in the future to build a user application that does this. The case study gathers information about available AI techniques, and three object detection deep learning models are selected. These are YOLOv3, SSD, and Faster R-CNN. The chosen models are used in a case study to find out which one is best suited to the task of identifying parking signs in real-time. Faster R-CNN performed the best in terms of recall and precision combined. YOLOv3 slacked behind in recall, but this could be because of how we chose to label the training data. Finally, SSD performed the worst in terms of recall, but was also relatively fast. Evaluation of the case study shows that it is possible to detect parking signs in real time. However, the hardware necessary is more powerful than that offered by currently available mobile platforms. Therefore it is concluded that a cloud solution would be optimal, if the techniques tested were to be implemented in a parking sign reading mobile app. / Datorseende är ett område inom datorvetenskap som fokuserar på att ge maskiner förmågan att se och känna igen objekt med olika typer av input, såsom bilder eller video. Detta är ett problem som ofta löses med hjälp av artificiell intelligens (AI). Mer specifikt, djupinlärning. I detta projekt undersöks möjligheten att använda djupinlärning för att känna igen trafikskyltar i realtid. Detta så att i framtiden kunna bygga en applikation, som kan byggas att känna igen parkeringsskyltar i realtid. Fallstudien samlar information om tillgängliga AI-tekniker, och tre djupinlärningsmodeller väljs ut. Dessa är YOLOv, SSD, och Faster R-CNN. Dessa modeller används i en fallstudie för att ta reda på vilken av dem som är bäst lämpad för uppgiften att känna igen parkeringsskyltar i realtid. Faster R-CNN presterade bäst vad gäller upptäckande av objekt och precision tillsammans. YOLOv3 upptäckte färre object, men det är sannolikt att detta berodde på hur vi valde att markera träningsdatan. Slutligen upptäckte SSD minst antal objekt, men presterade också relativt snabbt. Bedömning av fallstudien visar att det är möjligt att känna igen parkeringsskyltar i realtid. Den nödvändiga hårdvaran är dock kraftfullare än den som erbjuds av mobiler för närvarande. Därför dras slutsatsen att en molnlösning skulle vara optimal, om de testade teknikerna skulle användas för att implementera en app för att känna igen parkeringskyltar.

Page generated in 0.0991 seconds