• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel oil resistant cellulosic materials

Aulin, Christian January 2009 (has links)
The aim of this study has been to prepare and characterise oil resistant cellulosic materials, ranging from model surfaces to papers and aerogels. The cellulosic materials were made oil resistant by chemical and topographic modifications, based on surface energy, surface roughness and barrier approaches. Detailed wetting studies of the prepared cellulosic materials were made using contact angle measurements and standardised penetration tests with different alkanes and oil mixtures. A significant part of the activities were devoted to the development of model cellulosic surfaces with different degrees of crystalline ordering for the wetting studies. Crystalline cellulose I, II and amorphous cellulose surfaces were prepared by spin-coating of cellulose nanocrystal or microfibrillated cellulose (MFC) dispersions, with Langmuir-Schaefer (LS) films or by a layer-by-layer (LbL) deposition technique. The formation of multilayers consisting of polyethyleneimine (PEI)/anionic MFC or cationic MFC/anionic MFC was further studied and optimized in terms of total layer thickness and adsorbed amount by combining Dual Polarization Interferometry (DPI) or Stagnation Point Adsorption Reflectrometry (SPAR) with a Quartz Crystal Microbalance with Dissipation (QCM-D). The smooth cellulosic surfaces prepared had different molecular and mesostructure properties and different surface energies as shown by X-ray diffraction, Atomic Force Microscopy (AFM) imaging, ellipsometry measurements and contact angle measurements. The cellulose model surfaces were found to be ideal for detailed wetting studies, and after the surface has been coated or covalently modified with various amounts of fluorosurfactants, the fluorinated cellulose films were used to follow the spreading mechanisms of different oil mixtures. The viscosity and surface tension of the oil mixtures, as well as the dispersive surface energy of the cellulose surfaces, were found to be essential parameters governing the spreading kinetics. A strong correlation was found between the surface concentration of fluorine, the dispersive surface energy and the measured contact angle of the oil mixtures. Silicon surfaces possessing structural porous characteristics were fabricated by a plasma etching process. The structured silicon surfaces were coated with sulfate-stabilized cellulose I nanocrystals using the LbL technique. These artificial intrinsically oleophilic cellulose surfaces were made highly oleophobic when coated with a thin layer of fluorinated silanes. By comparison with flat cellulose surfaces, which are oleophilic, it is demonstrated that the surface energy and the surface texture are essential factors preventing oil from spreading on the surface and, thus, inducing the observed macroscopic oleophobic properties. The use of the MFC for surface coating on base papers demonstrated very promising characteristics as packaging materials. Environmental-Scanning Electron Microscopy (E-SEM) micrographs indicated that the MFC layer reduced the sheet porosity, i.e. the dense structure formed by the nanofibers resulted in superior oil barrier properties. Attempts were made to link the procedure for preparation of the MFC dispersions to the resulting microstructure of the coatings, and film porosity and the film moisture content to the resulting permeability properties. Finally, MFC aerogels were successfully prepared by freeze-drying. The surface texture of the porous aerogels was carefully controlled by adjusting the concentration of the MFC dispersion used for the freeze-drying. The different scales of roughness of the MFC aerogels were utilised, together with the very low surface energy created by fluorination of the aerogel, to induce highly oleophobic properties. / QC 20100623

Page generated in 0.0523 seconds