• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento de estratégia para extrusão de lipídios por engenharia genética, subsequente à análise genética da via exocítica da microalga Neochloris oleoabundans / Development of genetic engineering atrategy of lipids extrusior following the genetic analysis of exocytic pathway from micralga Neochloris oleoabudans

Toni, Isabella Macedo, 1986- 12 January 2011 (has links)
Orientadores: Gonçalves Amarante Guimarães Pereira, Laudiene Evangelista Meyer / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-20T16:23:11Z (GMT). No. of bitstreams: 1 Toni_IsabellaMacedo_M.pdf: 5580969 bytes, checksum: 6316597533645e14651af065e8968c0a (MD5) Previous issue date: 2011 / Resumo: Há no mundo um consenso sobre a necessidade de se encontrar fontes de carbono renováveis para a substituição do petróleo. O cultivo de microalgas tem sido considerado uma alternativa promissora para suprir essas cadeias carbônicas e biocombustíveis, visto que são microorganismos fotossintetizantes que podem acumular grandes quantidades de triacilglicerol (TAG) como reserva energética. A transesterificação desses TAG por alcoóis simples gera alquil-esteres, cujas propriedades são muito próximas às encontradas na composição do biodiesel. O glicerol, subproduto da produção de biodiesel, pode ser convertido em propeno, bloco de construção fundamental para a indústria petroquímica. A obtenção de TAG de microalgas requer o cultivo do microorganismo, a recuperação da biomassa do meio líquido e o processamento dessa biomassa para separação da fração lipídica. As etapas de recuperação da biomassa e obtenção da fração lipídica são estágios realmente críticos, de modo que são considerados os principais obstáculos para a viabilidade econômica da produção. A indução artificial da secreção das reservas lipídicas é uma idéia promissora que pode viabilizar a produção de lipídios por microalgas em escala industrial. Em vista disso, o objetivo do presente trabalho foi o desenvolvimento de bases metodológicas para a construção de um vetor que proporcione comprometimento de das reservas lipídicas com o processo de exocitose. Alguns membros da família SNARE são responsáveis por comprometer vesículas com a via exocítica. Propriedade que pode ser artificialmente introduzida nas reservas lipídicas por meio do domínio SNARE. A busca no genoma de Neochloris oleoabundans, microalga com alto teor lipídico sequenciada por nosso laboratório, indicou 19 sequências pertencentes à família SNARE. A análise dessas sequencias indicou o gene responsável pela via exocítica. A principal forma de reserva energética de microalga são vesículas de TAG chamadas de oilbodies. Em plantas é encontrada a proteína oleosina inserida nesses oilbodies, a cuja existência relaciona-se a um aumento de óleo nas sementes. A oleosina pode ser um bom candidato para carregar o motivo SNARE para as reservas lipídicas dos oilbodies, levando-os a se fusionarem com a membrana plasmática. A necessidade de se confirmar a funcionalidade da oleosina em microalgas levou a construção de um plasmídeo contendo a ORF para oleosina fundida no mesmo quadro de leitura com uma marca visual. A construção foi adaptada para testes em Chlamydomonas reinhardtii, uma miroalga modelo. Uma marca de seleção por antibiótico foi adicionada a fim de se facilitar a busca por tranformantes. Uma vez confirmado o funcionamento da oleosina, uma construção contendo a proteína ligada ao domínio SNARE de exocitose pode ser construída para N. oleoabundans ou qualquer microalga com potencial industrial. Uma tecnologia como essa permitiria a recuperação dos lipídios diretamente do meio de cultura, eliminando etapas críticas para a produção de hidrocarbonetos em larga escala a partir de microalgas e tem potencial de aumentar a taxa de conversão da energia capturada da biomassa em óleo / Abstract: It is worldwide accepted the vital need to find renewable carbon sources to replace the use of petrol. Microalgae can storage triacylglycerol (TAG) as their major energy reservoir. Hence, culturing these photosynthetic microorganisms has been considered a promising alternative for renewable carbon sources and biofuels production. TAG transestherification produces alquil-esther, which properties are very similar to those found in biodiesel. Furthermore, a byproduct of biodiesel production is glicerol, which can be easily converted to propen, the fundamental block for petro-chemistry industry. Algal TAG production requires the cultivation of the microorganism, followed by dewatering and processing of its biomass in order to obtain the lipid fraction. These last two processes are considered critical and may be regarded as one of the primary obstacles to economic viability of production. Thus, engineered organisms that actively secrete their triacylglycerol content would afford the production of lipids by microalgae in an industrial scale. The aim of this study, therefore, is to establish methodological basis for the development of a molecular device which commits lipid reserves in the exocytosis pathway. Some proteins of SNARE family have the ability to engage their associated vesicles to exocytosis. This property can be artificially introduced into the lipid reserves through the SNARE domain. The triacylglycerol is stored in vesicles called oilbodies, which are the main energy storage in microalgae. Seed plants oilbodies contain imbibed in their membranes proteins called Oleosins, which existence was related to increase in oil reservoir. The anchoring ability of oleosins may be used to carry the SNARE motif to oilbodies, causing them to fuse with the plasma membrane. The genome of Neochloris oleoabundans, a high lipid content microalga, was sequenced by our laboratory. Genome wide analysis revealed 19 SNAREs sequences. The probable SNARE required in the exocytosis pathway and the domains were identified and characterized. Aiming to confirm the functionality of oleosin in microalgae, a plasmid containing an oleosin fused in frame with a GFP reporter was built for Chlamydomonas reinhardtii, a model microalga. An antibiotic resistance marker was added to allow efficient screening of transformed cells. Once the oloeosin function is confirmed in the model, a molecular device comprising the exocytic SNARE domain connected to an oleosin can be built. A device like this can be adapted not only for N. oleoabundans, but also to any microalgae with industrial use potential. Such technology could enable the recovery of TAG lipids directly from the culture medium and would eliminate costly stages of high-scale hydrocarbon production from microalgae. Moreover, it could potentially improve the conversion rate of energy to lipids / Mestrado / Genetica de Microorganismos / Mestre em Genética e Biologia Molecular
2

Dynamique des corps lipidiques dans la graine d’Arabidopsis thaliana / The dynamics of oil bodies in Arabidopsis thaliana seed

Trigui, Ghassen 05 March 2014 (has links)
Chez les végétaux, les lipides de réserve sont stockés dans des structures subcellulaires, les corps lipidiques (CL). Ces organelles quasi-sphériques sont constituées d'un coeur de triacylglyceérols (TAGs), entourés d'une monocouche de phospholipides (PLs) et sont produites à partir du réticulum endoplasmique avant d'être libérés dans le cytoplasme cellulaire. Les oléosines, dont il existe 5 isoformes graine spécifiques (S1 à S5) chez Arabidopsis thaliana, sont des protéines majeures du CL, insérées à la surface de sa demi-membrane. La dynamique du CL (chargement/déchargement en huile) est complexe et reste largement mal comprise. L'objectif de ce travail est de modéliser la formation et la dynamique des corps lipidiques dans la graine en développement de l'espèce Arabidopsis thaliana, afin de mieux appréhender les mécanismes responsables de la biogenèse et la dynamique des CLs. L’utilisation de colorants des lipides neutres constituant les CLs, couplée à la microscopie confocale, a permis l’obtention de piles d’images de CLs d’embryons à différents jours du développement, en contexte sauvage et en contexte déplétif pour une, deux ou trois oléosines (S1, S3 et S4). - Un pipeline de segmentation d'images a tout d’abord été développé pour extraire différents estimateurs caractérisant la taille et la dispersion spatiale des corps lipidiques. Les estimateurs ont permis d'analyser l'évolution de la taille et de la dispersion spatiale des corps lipidiques en fonction du temps du développement, et de mettre en évidence la variabilité entre génotypes.- Ces données ont ensuite été analysées et étudiées statistiquement par des approches utilisant des modèles linéaires et des modèle quantile qui ont permis de conclure sur l'effet de chacune des oléosines étudiées, ainsi que celui de leurs interactions, sur la distribution des corps lipidiques.- Enfin, un modèle décrivant la dynamique de coalescence de la population des corps lipidiques a été proposé, simulé numériquement, puis comparé aux données expérimentales. Ce modèle a permis de tester différentes hypothèses de la dynamique de biogenèse et de croissance par coalescence du corps lipidique formalisées dans le modèle mathématique. Différents effets de la composition du corps lipidique en oléosines sur la vitesse de coalescence des corps lipidiques ont été mis en évidence. Les résultats de ces trois axes ont permis de proposer et discuter des rôles associés à chacune oléosine dans une perspective de compréhension des mécanismes mis en œuvre dans la dynamique du corps lipidique. / In plants, lipid reserves are stored in subcellular structures called lipid bodies (LB). These virtually spherical organelles consist of a core of triacylglycerols (TAG), surrounded by a monolayer of phospholipids (PLs), are produced from the endoplasmic reticulum and then released into the cell cytoplasm. Oleosins, composed of five seed-specific isoforms (S1 to S5) in Arabidopsis thaliana, are major proteins of the LB, inserted on the surface of the half-membrane. The dynamics of LB (charging / uncharging oil) is complex and remains largely misunderstood. The objective of this work is to model the formation and dynamics of lipid bodies in the developing seed of Arabidopsis thaliana, to better understand the mechanisms responsible for the biogenesis and dynamics of LBs. The use of dyes staining neutral lipids constituting the LD, coupled with confocal microscopy, allowed obtaining image stacks of LB from embryos at different days of development, in a wild-type or depleted (mutant) context for one, two or three oleosins (S1, S3 and S4).- An image segmentation pipeline has been first developed, enabling extraction of various estimators for characterizing the size and spatial dispersion of the lipid bodies. Estimators were used to analyse the evolution of the size and spatial dispersion of lipid bodies as a function of stage of development, and to highlight the variability between genotypes.- These data were then processed and statistically analysed by approaches using linear as well as quantile model that concluded on the effect of each of oleosins investigated as well as their interactions on the distribution of lipid bodies.- Last, a model describing the coalescence dynamics of LB populations has been proposed, digitally simulated and compared to experimental data sets. This model was used to test various hypotheses on the dynamics of biogenesis and coalescence-based growth of lipid bodies as formalized according to the mathematical model. Several effects of oleosin composition on LB coalescence rate have been highlighted. The results of these three axes allowed to propose and discuss the roles associated with each oleosin in the broader perspective of understanding the mechanisms involved in the lipid bodies dynamics.
3

FIELD EVALUATION OF TOBACCO ENGINEERED FOR HIGH LEAF-OIL ACCUMULATION

Perry, James 01 January 2019 (has links)
The biofuel market is dominated by ethanol and biodiesel derived from cellulosic and lipid-based biomass crops. This is largely due to the relatively low costs and reliability of production. At present, production of non-food plant-derived oils for biofuel production in the U.S. is minimal. A research team from the Commonwealth Scientific and Industrial Research Organization (CSIRO), an independent Australian federal government research institution, has developed an efficient transgenic system to engineer oil production in tobacco leaves. This novel system is comprised of multiple transgenes that direct the endogenous metabolic flux of oil precursors towards triacylglycerol (TAG) production. Additional genes were incorporated to store and protect the accumulated oil in vegetative tissues. Preliminary greenhouse tests by the CSIRO research group indicated an oil content of > 30% by dry weight (DW) in tobacco leaf lamina. Here we evaluated two transgenic lines against a non-transgenic control in 2017 and 2018 in greenhouse and field production systems. The 2017 pilot study showed that the high leaf-oil tobacco line was viable and will grow in the field in Kentucky. Chemical analyses revealed significantly higher oil content compared to the non-transgenic control despite several logistical setbacks. These promising discoveries prompted the deployment of additional transgenic line assessments and further data validation in 2018. Line evaluations in 2018 revealed that the LEC2:WRI1:DGAT:OLE transgenic line had the highest leaf oil content (≥ 19.3% DW-1) compared to both the WRI1:DGAT:OLE transgenic line (≤ 5.6% DW-1) and non-transgenic control (≤ 2.1% DW-1). The results of this research will contribute to the successful development of transgenic tobacco lines engineered to accumulate high concentrations of TAG in the leaves.
4

Arabidopsis Serine/Threonine/Tyrosine Protein Kinase : Implications in Growth And DEvelopment

Iyappan, R January 2015 (has links) (PDF)
Protein phosphorylation is a key cellular regulatory mechanism. Phosphorylation can either activate or inhibit the function of a particular protein. Activation of protein kinases has been implicated in response to light, pathogen attack, growth regulators, stress and nutrient deficiency in plants. Most of the intracellular signaling pathways use protein phosphorylation to create signals and conduct them further. Identification of the physiological substrates for the protein kinase enables the understanding of how the signaling networks function and how they are disturbed under adverse conditions. Identification of the physiological substrates for the kinase is limited by the low stoichiometry of protein phosphorylation inside the cell. Although, recent advances in mass spectrometric techniques have increased the identification of phosphorylated protein in the cell, the precise connection between the kinase and identified phosphorylated protein is not established. Dual-specificity kinases that phosphorylate on serine, threonine and tyrosine residues have been identified and characterized in plants. However, the in vivo substrates for most of these kinases have not been identified. Recently a manganese-dependent dual-specificity STY protein kinase (STYK) has been identified from Arabidopsis thaliana which has been suggested to play a role in plant growth, development and in systemic acquired resistance. The identification of the physiological substrate for AtSTYK may help in understanding the signal transduction pathway the kinase in involved and how it is perturbed in different physiological condition. Therefore, the main objectives of my current study are,  To identify the physiological substrates of the AtSTY dual specificity kinase (STYK). 1) Identification of the substrates by using genetic, proteomic and biochemical approaches. 2) Biochemical characterization of the substrate phosphorylation. 3) Identifying the biochemical function of the substrate protein. 4) Assessing the significance of substrate phosphorylation.

Page generated in 0.0274 seconds