• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 44
  • 44
  • 19
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of Lhx2 during organogenesis : analysis of the hepatic, hematopoietic and olfactory systems /

Kolterud, Åsa, January 2004 (has links)
Diss. (sammanfattning) Umeå : Univ., 2004. / Härtill 4 uppsatser.
2

Olfaktorické receptory spermií u soliterních a sociálních hlodavců. / Sperm olfactory receptors in solitery and social rodents.

Klempt, Petr January 2013 (has links)
No description available.
3

Molecular and functional anatomy of the mouse olfactory epithelium /

Vedin, Viktoria, January 2006 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2006. / Härtill 4 uppsatser.
4

Evolution of avian olfaction

Steiger, Silke S. Fidler, Andrew Eric, Kempenaers, B. Mueller, Jakob C. January 2008 (has links)
Thesis (doctoral)--Ludwig-Maximilians-Universität München, 2008. / Title from PDF t.p. (viewed on Jan. 8, 2009). Some chapters co-authored with others. Includes bibliographical references (p. 117-127).
5

Spatially determined olfactory receptor choice is regulated by Nfi-dependent heterochromatin silencing and genomic compartmentalization

Bashkirova, Elizaveta Vladimirovna January 2021 (has links)
Pattern formation during development is guided by tightly controlled gene regulatory networks that lead to reproducible cell fate outcomes. However, stochastic choices are often employed to further diversify cell fates. These two mechanisms are closely interlinked in the mouse olfactory system, where stochastic expression of one of one out of >1,000 olfactory receptor (OR) genes is restricted to anatomical segments, or “zones”, organized along the dorsoventral axis of the olfactory epithelium (OE). Despite recent progress in understanding the processes underlying OR choice, the mechanism by which the dorsoventral position of an olfactory sensory neuron (OSN) dictates its OR repertoire has remained elusive and is the focus of this thesis. To gain insight into a possible mechanism I compared the transcriptomes, chromatin landscape, and nuclear architecture of cells isolated from ventral and dorsal zonal segments of the OE. I determined the developmental window in which cells become restricted in their zonal OR repertoire and found this coincided with both the deposition of heterochromatic histone marks H3K9me3 and H3K79me3 on OR genes and their coalescence into a multi-chromosomal compartment. Comparing heterochromatin levels and OR compartment composition in OSNs from different zones, I determined in each case OR genes with more dorsal indexes have higher levels of H3K9me3/H3K79me3 and thus become silenced, while OR genes with more ventral indexes have no heterochromatin and consequently are excluded from OR compartments. Thus, ORs that are “competent” for activation are relatively more accessible, while still being recruited into the OR compartment where they can interact with the proximally positioned enhancer hub. I found that this mechanism is regulated by Nfi family transcription factors that are expressed in a ventral (high) to dorsal (low) gradient in the OE. Deletion of Nfi A, B and X transforms the heterochromatin and OR compartmentalization in ventral OSNs to a more dorsal state, and shifts their preferred OR repertoire towards more dorsal ORs. This result implicates Nfi proteins as key regulators of zonal OR expression. Finally, I probed the nuclear architecture in single cells to look for the source of stochastic choice within zonal segments. I found high variability in inter-chromosomal OR compartment and enhancer hub composition between individual OSNs that stemmed from the unpredictable and variable positioning of chromosomes in the interphase nucleus. Overall, this thesis provides evidence for a mechanism of zonal OR choice that combines deterministic restrictions imposed by a gradient of Nfi with random inter-chromosomal contacts.
6

Olfactory Epithelium size in Mammals : A structured review

Hipp Marchidan, Gabrielle January 2021 (has links)
Members of the class Mammalia have the most advanced skeletal complexity of the nasal cavity among vertebrates. Most mammals have an olfactory epithelium that consists of basal cells, supporting cells and olfactory sensory neurons that bind odor molecules with their cilia. The olfactory epithelium is responsible for detecting odor stimuli. The surface area of olfactory epithelium varies greatly among species. Carnivores have a generally larger surface area of the olfactory epithelium than primates and ungulates of the same size. Modern odontocetes lack olfactory epithelium. To get an overview of the between-species differences of the olfactory epithelium surface area and number of olfactory receptor cells, a search of the scientific literature was performed, using the database Web of Science and references from the scientific articles. The assembled data were entered into two tables, one that contains species names, surface area of the olfactory epithelium and references, and another that includes the total number of olfactory receptor cells for the few species that have been studied in this respect so far. Methods of measuring olfactory epithelium size differ, some studies used immunohistochemistry, other measured osteological proportions, like the surface area of the olfactory turbinals. A compilation of the published data provides an overview of the range that the size of the olfactory epithelium can have and allows for between-species comparisons of this anatomical measure as well as for assessing possible correlations with olfactory capabilities.
7

A symmetry breaking process proposes non-coding functions for olfactory receptor mRNAs.

Pourmorady, Ariel David January 2024 (has links)
Some of life’s most important behaviors are guided by the sense of smell. Detecting and interpreting odor information influences food-seeking, predator avoidance, sociality, competition, mating rituals, and more, shaping how organisms interact with their environment. In vertebrates, odors are detected by olfactory sensory neurons (OSNs) of the main olfactory epithelium (MOE). OSNs rely on olfactory receptors (ORs) to recognize odorants and trigger neural activation. The OR gene pool is typically vast, containing between 200-4000 olfactory receptor genes across mammals, yet mature OSNs stably express only one gene from one allele. Data from mice show that ORs are anatomically restricted to designated sections of the MOE, but within these zones, OR expression appears mosaic and random. Since the discovery of the OR gene pool 30 years ago, deciphering how OSNs choose which OR they are going to express remains a central question. While multiple differentiation-dependent alterations to the OSN nucleus are required for OR expression, the most notable contribution comes from the organization of OR-gene specific enhancers, called Greek Islands (GIs), around the chosen allele. GIs use the transcription factors Lhx2 and Ebf1, as well as the coactivator Ldb1, to form a nucleoprotein complex known as the Greek Island Hub (GIH) to associate with the active OR gene and support its transcription. Bulk Hi-C data show that GIs form strong, specific, and singular associations with the active OR gene, suggesting a possible role for the GIH in singular OR choice. However, single-cell Hi-C analysis shows that multiple GIHs exist in every OSN with no clear differences between them, complicating the contribution of the GIH. Furthermore, ectopic OR gene activation is sufficient to drive association of an OR locus with a GIH and bias choice, suggesting a role for OR transcription itself in supporting its own stable expression. To clarify the genomic transformations that result in the formation of multiple GIHs, I performed combined scRNA-seq and scATAC-seq in the MOE. I determined that a selective inactivation event was taking place during the INP3-to-iOSN transition, where OSNs would silence a large fraction of the GI pool. GI inactivation takes place during a phase preceding OR choice, where OR expression is polygenic but skewed towards one OR. My single-cell Hi-C analysis verifies the presence of multiple GIHs per cell, with similar GI-GI interaction properties, but I also observe that the single active GIH contains much more specific GI-OR gene interactions than those in inactive GIHs. These architectural differences are supported by Liquid Hi-C and H3K27ac HiChIP analysis where I observe that the active GIH is more highly acetylated than inactive GIHs and possesses more euchromatic physical properties. Taken together these data show that while most GIs were initially euchromatic during the polygenic phase of OR expression, once choice has taken place, GIHs possess distinct OR interaction properties, chromatin marks, and physical features that are determined by their association with the active OR gene. I believe that these data are best explained by a winner-takes-all event, where GIHs containing transcribed OR genes during the polygenic phase are in competition for choice. Once one OR begins to win, it recruits resources to maintain its expression which consequently results in the silencing of other GIHs. Ectopic induction of OR gene transcription is sufficient to bias choice and silence other ORs by impeding their specific association with a GIH. I find that this does not depend on the coding properties of OR protein, as the transcription of non-coding OR mRNAs still results in OR gene silencing. I describe this competition as a symmetry breaking process, where asymmetrical reorganization of transcriptional resources to a single GIH is mediated by non-coding properties of a single highly expressed OR mRNA, culminating in the stable expression of that allele alone for the remainder of a cell’s lifetime.
8

Single-Cell Transcriptome Analysis of Olfactory Sensory Neurons

Chien, Ming-Shan January 2016 (has links)
<p>Olfactory sensory neurons (OSNs), which detect a myriad of odorants, are known to express one allele of one olfactory receptor (OR) gene (Olfr) from the largest gene family in the mammalian genome. The OSNs expressing the same OR project their axons to the main olfactory bulb where they converge to form glomeruli. This “One neuron-one receptor rule” makes the olfactory epithelium (OE), which consists of a vast number of OSNs expressing unique ORs, one of the most heterogeneous cell populations. However, the mechanism of how the single OR allele is chosen remains unclear along with the question of whether one OSN only expresses a single OR gene, a hypothesis that has not been rigorously verified while we performed the experiments. Moreover, failure of axonal targeting to single glomerulus was observed in MeCP2 deficient OSNs where delayed development was proposed as an explanation for the phenotype. How Mecp2 mutation caused this aberrant targeting is not entirely understood.</p><p>In this dissertation, we explored the transcriptomes of single and mature OSNs by single-cell RNA-Seq to reveal their heterogeneity and further studied the OR gene expression from these isolated OSNs. The singularity of sequenced OSNs was ensured by the observation of monoallelic expression of X-linked genes from the hybrid samples from crosses between mice of different strains where strain-specific polymorphisms could be used to track the allelic origins of SNP-containing reads. The clustering of expression profiles from triplicates that originated from the same cell assured that the transcriptomic identities of OSNs were maintained through the experimental process. The average gene expression profiles of sequenced OSNs correlated well to the conventional transcriptome data of FACS-sorted Omp-positive cells, and the top-ranked expression of OR was conceded in the single-OSN transcriptomes. While exploring cellular diversity, in addition to OR genes, we revealed nearly 200 differentially expressed genes among the sequenced OSNs in this study. Among the 36 sequenced OSNs, eight cells (22.2%) showed multiple OR gene expression and the presences of additional ORs were not restricted to the neighbor loci that shared the transcriptional effect of the primary OR expression, suggesting that the “One neuron-one receptor rule” might not be strictly true at the transcription level. All of the inferable ORs, including additional co-expressed ORs, were shown to be monoallelic. Our sequencing of 21 Mecp2308 mutant OSNs, of which 62% expressed more than one OR genes, and the expression levels of the additional ORs were significantly higher than those in the wild-type, suggested that MeCP2 plays a role in the regulation of singular OR gene expression. Dual label in situ hybridization along with the sequence data revealed that dorsal and ventral ORs were co-expressed in the same Mecp2 mutant OSN, further implying that MeCP2 might be involved in regulation of OR territories in the OE. Our results suggested a new role of MeCP2 in OR gene choice and ratified that this multiple-OR expression caused by Mecp2 mutation did not accompany delayed OSN development that has been observed in the previous studies on the Mecp2 mutants.</p> / Dissertation
9

Odor processing and associative olfactory learning in the moth Manduca sexta. / 烟草天蛾嗅覺系統運作及氣味學習的原理研究 / CUHK electronic theses & dissertations collection / Yan cao tian e xiu jue xi tong yun zuo ji qi wei xue xi de yuan li yan jiu

January 2010 (has links)
Neural representations of odors get associated with other stimuli through experience. Are action potentials the neural representation that directly gets associated with reinforcement during conditioning? In Manduca , I found that odor presentations elicited only one or two spikes at odor onset (and sometimes offset) in each of a small portion of Kenyon cells, a population of neurons known to be crucial for olfactory associative learning. By using a series of odor-taste associative conditioning paradigms with various sucrose presentation timings, I carefully controlled the temporal overlap between Kenyon cell spiking and sucrose reinforcement timing. I found that in paradigms that led to learning, spiking in Kenyon cells ended well before the reinforcement was given. Further, increasing the temporal overlap between Kenyon cell spiking and sucrose reinforcement actually reduced learning efficacy. Therefore, spikes in Kenyon cells are not the neural representation that gets directly reinforced, and Hebbian spike timing--dependent plasticity in Kenyon cells alone cannot underlie this learning. / Two important focuses in neuroscience are to study how animals process sensory stimuli, and how such stimuli get associated with other sensory modalities through experience. Often, sensory stimuli elicit the oscillatory synchronization of neurons in different parts of the brain, and thus may constitute an important stage in sensory processing. Odor-evoked oscillatory synchronization has been observed in a wide variety of animals, including mammals and insects. Despite differences in details of anatomical structure, animals from widely different phyla appear to use similar strategies to encode odors. Here, using the moth Manduca sexta, I examined the factors that cause odor-evoked oscillatory synchronization of olfactory neurons and that determine the frequency of these oscillations. I found that frequency of oscillations decreased from &sim;40 Hz to &sim;20 Hz during the course of a lengthy odor pulse. This decrease in oscillatory frequency appeared in parallel with a decrease in net olfactory receptor output, suggesting that the intensity of olfactory receptor neuron input to the antennal lobe, the first olfactory relay center, may determine oscillatory frequency. However, I found that changing odor concentration had little effect on oscillatory frequency. Combining the results of recordings made in vivo and computational models, I found that increasing odor concentration recruited additional, but less well-tuned olfactory receptor neurons to respond to the odor. Firing rates of these neurons were tightly constrained by adaptation and saturation. My work established that, in the periphery, odor concentration is mainly encoded by the size of the olfactory receptor neuron population that responded to the odor, whereas oscillatory frequency is determined by the adaptation and saturation of this response. / Ong, Chik Ying Rose. / Advisers: Siu Kai Kong; Mark Stopfer. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 132-147). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
10

Genetic Mechanisms of Regulated Stochastic Gene Expression

Horta, Adan January 2019 (has links)
The adaptability and robustness of the central nervous system is partially explained by the vast diversity of neuronal identities. Molecular mechanisms generating such heterogeneity have evolved through multiple independent pathways. The olfactory sensory system provides a unique and tractable platform for investigating at least two orthogonal gene expression systems that generate neuronal diversity through stochastic promoter choice: olfactory receptor genes and clustered protocadherins. Olfactory sensory neuron identity is defined by the specific olfactory receptor (OR) gene chosen. Greater than 1300 OR genes are scattered throughout the mouse genome, and expression of an OR defines a unique sensory neuron class that responds to a selective set of odorants. This work further delineated an unprecedented network interchromosomal (trans) interactions indispensable for singular OR choice. In a largely orthogonal gene expression system, I sought to understand the molecular mechanisms governing stochastic protocadherin choice. Clustered protocadherins are an evolutionary- conserved system that is involved in cell-cell identification through a series of homo- and heterophilic interactions. This work uncovered a methylation-dependent mechanism for generating stochastic gene expression in the context of cis-regulatory elements. Overall, this work highlighted divergent cis and trans transcriptional regulatory mechanisms for generating stochastic gene expression and neuronal diversity.

Page generated in 0.0487 seconds