• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 2
  • 1
  • Tagged with
  • 24
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Wind Cave: Direct Access to a Deep Subsurface Aquifer Reveals a Diverse Microbial Community and Unusual Manganese Metabolism

Hershey, Olivia Suzanne 30 November 2021 (has links)
No description available.
12

Synthesis of Water Quality Data and Modeling Non-Point Loading in Four Coastal B.C. Watersheds: Implications for Lake and Watershed Health and Management

Rodgers, Lisa 24 December 2015 (has links)
I compared and contrasted nitrogen and phosphorus concentrations and land use differences in two oligotrophic lakes (Sooke and Shawnigan) and two meso-eutrophic lakes (St. Mary and Elk) in order to evaluate nutrient concentrations over time, and evaluate the relationship between in-lake nutrients and land use in the surrounding watershed. I used MapShed© nutrient transport modeling software to estimate the mass load of phosphorus and nitrogen to each lake, and evaluated the feasibility of land use modifications for reducing in-lake nutrients. In comparing nitrogen and phosphorus data in Sooke and Shawnigan Lakes, I determined that natural watershed characteristics (i.e., precipitation, topography, and soils) did not account for the elevated nutrient concentrations in Shawnigan verses Sooke Lake. Natural watershed characteristics indicated that external loads into Shawnigan Lake would be lesser-than or equal to those into Sooke Lake if both watersheds were completely forested. I evaluated trends of in-lake nutrient concentrations for Sooke and Shawnigan Lakes, as well as two eutrophic lakes, St. Mary and Elk. Ten to 30-year trends indicate that nitrogen and phosphorus levels in these lakes have not changed significantly over time. Time-segmented data showed that nutrient trends are mostly in decline or are maintaining a steady-state. Most nutrient concentration data are not precipitation-dependent, and this, coupled with significant correlations to water temperature and dissolved oxygen, indicate that in-lake processes are the primary influence on lake nutrient concentrations -- not external loading. External loading was estimated using, MapShed©, a GIS-based watershed loading software program. Model validation results indicate that MapShed© could be used to determine the effect of external loading on lake water quality if accurate outflow volumes are available. Based on various land-cover scenarios, some reduction in external loading may be achieved through land-based restoration (e.g., reforestation), but the feasibility of restoration activities are limited by private property. Given that most of the causal loads were determined to be due to in-lake processes, land-based restoration may not be the most effective solution for reducing in-lake nitrogen and phosphorus concentrations. / Graduate
13

The role of terrestrial and phytoplankton-derived organic matter in planktonic food webs

Wenzel, Anja January 2012 (has links)
Lakes are important global ecosystems and many of them are nutrient-poor (unproductive). Especially in northern boreal latitudes, lakes may be heavily subsidized by terrestrial organic material (t-OM) from peat layers in the catchment. Thus, in addition to heterotrophic bacteria and phytoplankton, zooplankton may also use the particulate fraction of peat layer t-OM (t-POM) as a potential food source in those systems. Inputs of t-OM in northern latitudes are anticipated to increase in the future due to increasing precipitation and temperature. As t-OM is a good substrate for bacterial growth and as bacteria can often outcompete phytoplankton for inorganic nutrients, the proportions of heterotrophic bacteria and phytoplankton are expected to change in unproductive lakes. This may have pronounced impacts on zooplankton population dynamics. The aim of my thesis was to investigate how changes in food quality and quantity will affect metazoan zooplankton performance in unproductive lakes. Three laboratory studies assessed the quality of specific food components (phytoplankton, bacteria and peat layer t-POM) and their effects on Daphnia survival, growth and reproduction. Further, a mesocosm study with a full natural plankton community tested the predictions of the Light:Nutrient-Hypothesis in an unproductive clear water lake in situ by adding carbon and inorganic nutrients and changing light availability. I found that pure bacterial (Pseudomonas sp.) or t-POM diets could not sustain Daphnia populations, even though both were readily ingested. Daphnids needed at least 10-20% phytoplankton (Rhodomonas) in the diet to survive and even higher proportions (≥ 50%) were necessary for the production of viable offspring. Further, I showed that the dilution of non-limiting concentrations of Rhodomonas with increasing proportions of Pseudomonas or t-POM led to decreased Daphnia performance. Both Pseudomonas and t-POM lack essential biochemicals (fatty acids and sterols). In contrast, mineral nutrient limitation only occurred on t-POM-dominated diets as evidenced by a labeling experiment that showed Daphnia can incorporate carbon and phosphorus from Rhodomonas and Pseudomonas with similar efficiencies. Thus, peat layer t-POM was a lower quality food than Pseudomonas. This was corroborated by the finding that intermediate additions of Pseudomonas to limiting amounts of Rhodomonas supported increased Daphnia survival, growth and reproduction while t-POM additions had no beneficial effect. My results suggest that high terrestrial stable isotope signals in metazoan zooplankton are most likely derived from t-OM that is channeled tohigher trophic levels via the microbial loop (i.e. heterotrophic bacteria and/or bacterivorous protozoa) but not from direct metazoan feeding on t-POM. Furthermore, bacteria may serve as an important supplement to zooplankton diets when phytoplankton abundance is low. However, a sufficient proportion of high quality phytoplankton is always necessary to fulfil mineral and especially biochemical requirements of zooplankton in unproductive aquatic systems. The results of the mesocosm study showed that the Light:Nutrient-Hypothesis is not applicable to unproductive clear water systems in which the phytoplankton community is dominated by mixotrophs. In the face of the theoretical predictions, low light levels led to decreased zooplankton biomass. This was most likely caused by a shift in the algal community composition towards less edible taxa. Another reason may have been a weakening of the microbial loop. This is in line with the results of the laboratory studies that point out the importance of the microbial food web for zooplankton nutrition in unproductive lakes.
14

Interactions between Chaoborus spp. and Mysis relicta and their impact on pelagic crustacean zooplankton in mesocosms at the Experimental Lakes Area

Seckar, Dalila 13 April 2009 (has links)
The objectives of this study were: 1) to compare and contrast the effects of variations in natural densities of two common freshwater predators of crustacean zooplankton, Chaoborus spp. and Mysis relicta; and 2) to determine whether the combined impacts of these predators together differed from their effects when alone. In deep (>10m) mesocosms, additions of Chaoborus and Mysis at natural densities did not result in large changes in zooplankton abundances, lengths, or biomass. Significant decreases in abundance were observed only for Bosmina longirostris and Daphnia spp. In small (~20L) enclosures, higher predator densities caused zooplankton declines over three days. Strong interactive effects between Chaoborus and Mysis were not detected in either the large or small enclosures. This suggests that the combined effects of these two predators can be predicted from their effects determined in isolation.
15

Interactions between Chaoborus spp. and Mysis relicta and their impact on pelagic crustacean zooplankton in mesocosms at the Experimental Lakes Area

Seckar, Dalila 13 April 2009 (has links)
The objectives of this study were: 1) to compare and contrast the effects of variations in natural densities of two common freshwater predators of crustacean zooplankton, Chaoborus spp. and Mysis relicta; and 2) to determine whether the combined impacts of these predators together differed from their effects when alone. In deep (>10m) mesocosms, additions of Chaoborus and Mysis at natural densities did not result in large changes in zooplankton abundances, lengths, or biomass. Significant decreases in abundance were observed only for Bosmina longirostris and Daphnia spp. In small (~20L) enclosures, higher predator densities caused zooplankton declines over three days. Strong interactive effects between Chaoborus and Mysis were not detected in either the large or small enclosures. This suggests that the combined effects of these two predators can be predicted from their effects determined in isolation.
16

Závislost rychlosti růstu pstruha obecného Salmo trutta na populační hustotě v oligotrofních tocích / Density dependent growth of brown trout Salmo trutta in oligotrophic streams

Závorka, Libor January 2011 (has links)
This thesis deals with the influence of population density on the growth of brown trout Salmo trutta. The research was carried out in the Šumava National Park in the river basins of two oligotrophic streams, the Vydra and the Křemelná. Data has been collected between years 2005 and 2010, every spring and autumn. Fish were caught via electrofishing and the length and weight of each individual were measured. Every individual caught was marked in a unique way. A few samples of scales were taken from some of them. The scales were fixed into laboratory slides, scanned and measured by graphic software. According to the differences between annual lamellas density, the age and the annual growth of individual's body length were estimated. Thanks to these results a negative relationship between the individuals' of age 1+ growth rate and the population density was confirmed. The importance of this thesis is mainly in comparing the influence of different spatial and time definitions of population on this relationship. The influence of the population density in spring (the initial time of the growth period) was proved to be essential for the growth rate. This fact suggests the importance of compensation growth intensity after the long period of winter for individual's general growth under conditions provided by...
17

Characterization of bacterial diversity in three oligotrophic environments using high-throughput sequencing technology / Caractérisation de la diversité bactérienne dans trois environnements oligotrophes en utilisant la technologie de séquençage à haut débit.

An, Shu 07 September 2012 (has links)
Les milieux oligotrophes sont pauvres en éléments nutritifs. En utilisant la technologie de séquençage à haut débit, on a étudié la diversité bactérienne dans trois environnements oligotrophes différents, y compris A. sâbles du désert, B. sâbles dans les tempêtes de l'Asie et C. l’eau et biofilms dans les réseaux de distribution d'eau potable.A. Le désert représente 30% de la surface de la terre. Les conditions de vie dans ces environnements sont un réel défi pour les micro-organismes à cause de nombreux facteurs limitants : peu d’eau et/ou de carbone disponible, une variation importante de température et une forte exposition aux irradiations UV. Le but de cette recherche est donc d’étudier la diversité bactérienne à la surface du sable du désert Taklemaken et du désert de Gobi en utilisant la technologie de séquençage à haut débit. Nos résultats ont révélé une grande diversité bactérienne dans le sol du désert comparable à d'autres types de sols. En outre, nous avons observé une corrélation positive entre la richesse bactérienne et le rapport C/N du sol.B. Les tempêtes de sable d'Asie se produisent presque toujours au printemps, elles sont générées dans les régions arides d'Asie telles que le désert Taklamaken et le désert de Gobi. L'arrivée des tempêtes de sable pourrait largement modifier l'environnement de l'air dans ces régions sous l’effet du vent, surtout dans les villes asiatiques qui sont le plus souvent touchées. Nos travaux visent à étudier la modification de la composition et la diversité des bactéries associées aux particules au moment de tempête de sable en Asie par la technologie de séquençage à haut débit. Nos résultats ont démontré que les compositions des bactéries associées aux particules sont modifiées pendant les tempêtes, en particulier, la proportion des Proteobacteria qui augmentent les jours de tempête. Nous avons signalé neuf genres bactériens détectés en plus pendant les jours de tempêtes, cela nécessite des études plus approfondies.C. Après avoir analysé la population bactérienne dans les tempêtes de sable, et celles des déserts, nous poursuivons notre objectif de recherche à un environnement aquatique. Nous avons suivi le flux d'eau provenant de l'usine d'Orly (DW-A) à l'entrée du réservoir (DW-B), et à la sortie du réservoir (DW-C). Nous avons constaté une forte variation de la communauté bactérienne, dans DW-A et DW-B, les bactéries prédominantes appartiennent aux populations des Betaproteobacteria, puis nous avons observé une conversion vers la population de Alphaproteobacteria dans DW-C. Le DW-C a montré une forte similitude avec un échantillon de biofilm (BF-C), ce qui suggère l'effet important du biofilm sur la modification des communautés bactériennes dans l'eau lors de la distribution. / Oligotrophic ecosystems can be loosely defined as environments that exhibit low ambient nutrient levels. During my thesis, I used 454 DNA pyrosequencing of partial 16S rDNA to explore the bacterial diversity in three different oligotrophic environments, including A. surface desert soil, B. Asian sandstorm dust and C. a section of the city of Paris’s drinking water distribution system.A. Arid regions represent nearly 30% of the Earth’s terrestrial surface. The living conditions at the surface of deserts are a challenge for microorganisms, as there is little available water and/or carbon, a very large range of temperatures and high exposure to UV irradiation from the Sun. In surface sand samples from two large Asian deserts, unexpectedly large bacterial diversity residing was revealed. Sequences belonging to the Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria phyla were the most abundant. An increase in phylotype numbers with increasing C/N ratio was noted, suggesting a possible role in the bacterial richness of these desert sand environments.B. Desert sandstorms are a meteorological phenomenon which have been postulated affect the Earth's climate and public health. We examined the particle-associated (dust and sand-associated) bacterial populations of atmospheric sand in the absence (as control) and presence of sandstorms in five Asian cities. Greater than 90% of the sequences can be classified as representing bacteria belonging to four phyla: Proteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. Principal component analyses showed that the sandstorm-associated bacterial populations were clustered by sampling year, rather than location. Members belonging to nine bacterial genera (Massilia, Planococcus, Carnobacterium, Planomicrobium, Pontibacter, Pedobacter, Lysobacter, Sanguibacter, Ohtaekwangia) were observed to increase in sand-associated samples from sandstorms, versus the controls. C. We characterized the bacterial communities in three water and three biofilm samples from one part of the Parisian drinking water distribution system. A dramatic change in bacterial population in the water during flow through the distribution system from the water treatment plant to the exit from the reservoir was found. The richness of the bacterial population was reduced from the water treatment plant to the reservoir (from 336 to 165 OTUs for water samples leaving the reservoir and from 947 to 275 for biofilm samples in the network). Several OTUs belonging to pathogenic genera were detected in our samples, mostly in the biofilm samples, thus suggesting that the biofilms may be an important source of bacteria during water distribution to the consumers.
18

Oceanic Interfaces: Investigations of Biogeochemical Changes Across Nutriclines and Frontal Boundaries

Adornato, Lori R 15 March 2007 (has links)
Biogeochemical changes across oceanic interfaces, and method development to study such changes, are described in this work. The interfaces studied include the Subtropical Front in the Pacific Ocean and the boundary at the base of the euphotic zone. Both interfaces are characterized by accumulations of phytoplankton, although the forcing functions that result in increased biomass are distinctly different. The Subtropical Front, located at approximately 30°N in the Pacific Ocean, was detected during a cruise in the summer of 2002 by its diagnostic 34.8 salinity outcrop, in spite of the absence of its associated temperature signature. The front displayed elevated concentrations of large diatoms; Rhizosolenia and Hemiaulus, with concentrations penetrating deeper in the water column south of the front. Rhizosolenia species were dominant on the warmer, high salinity side of the front, while Hemiaulus prevailed on the cooler, low salinity side. While high cell counts were enumerated by net tows, the elevated biomass was not visible in satellite color imagery. Size fractionated chlorophyll data revealed > 10 um cells were found below 200 m, indicating export of large cells out of the euphotic zone. This confirms observations by other investigators that fronts represent important regions of episodic export, although such export may go undetected if the biomass is not visible in ocean color images. Another region of interest was the narrow layer at the base of the euphotic zone. During stratified conditions, the layer was characterized by a fluorescence maximum, a primary nitrite maximum, and a nutricline. While fluorescence maxima have proven easy to detect using commercial fluorometers, nutrient distributions have proven more difficult. The Spectrophotometric Elemental Analysis System (SEAS) permitted detection of low concentrations of nitrite, nitrate, and phosphate with nanomolar sensitivity and 1 Hz or better sampling frequency. Using multiple wavelength spectroscopy, the range of nitrate concentrations from 2 nM to 20 uM have been detected. Profiles of nitrite obtained across the North Pacific Subtropical Gyre revealed the close correlation between nitrite and chlorophyll fluorescence maxima, suggesting that the nitrite maximum is formed by phytoplankton when insufficient light is available to permit reduction of nitrite to ammonia.
19

Deciduous forest vegetation in Boreo-nemoral Scandinavia

Diekmann, Martin January 1994 (has links)
No description available.
20

Characterization of bacterial diversity in three oligotrophic environments using high-throughput sequencing technology

An, Shu 07 September 2012 (has links) (PDF)
Oligotrophic ecosystems can be loosely defined as environments that exhibit low ambient nutrient levels. During my thesis, I used 454 DNA pyrosequencing of partial 16S rDNA to explore the bacterial diversity in three different oligotrophic environments, including A. surface desert soil, B. Asian sandstorm dust and C. a section of the city of Paris's drinking water distribution system.A. Arid regions represent nearly 30% of the Earth's terrestrial surface. The living conditions at the surface of deserts are a challenge for microorganisms, as there is little available water and/or carbon, a very large range of temperatures and high exposure to UV irradiation from the Sun. In surface sand samples from two large Asian deserts, unexpectedly large bacterial diversity residing was revealed. Sequences belonging to the Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria phyla were the most abundant. An increase in phylotype numbers with increasing C/N ratio was noted, suggesting a possible role in the bacterial richness of these desert sand environments.B. Desert sandstorms are a meteorological phenomenon which have been postulated affect the Earth's climate and public health. We examined the particle-associated (dust and sand-associated) bacterial populations of atmospheric sand in the absence (as control) and presence of sandstorms in five Asian cities. Greater than 90% of the sequences can be classified as representing bacteria belonging to four phyla: Proteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. Principal component analyses showed that the sandstorm-associated bacterial populations were clustered by sampling year, rather than location. Members belonging to nine bacterial genera (Massilia, Planococcus, Carnobacterium, Planomicrobium, Pontibacter, Pedobacter, Lysobacter, Sanguibacter, Ohtaekwangia) were observed to increase in sand-associated samples from sandstorms, versus the controls. C. We characterized the bacterial communities in three water and three biofilm samples from one part of the Parisian drinking water distribution system. A dramatic change in bacterial population in the water during flow through the distribution system from the water treatment plant to the exit from the reservoir was found. The richness of the bacterial population was reduced from the water treatment plant to the reservoir (from 336 to 165 OTUs for water samples leaving the reservoir and from 947 to 275 for biofilm samples in the network). Several OTUs belonging to pathogenic genera were detected in our samples, mostly in the biofilm samples, thus suggesting that the biofilms may be an important source of bacteria during water distribution to the consumers.

Page generated in 0.0321 seconds