• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effect of microwave radiation on Fe/ZSM-5 for catalytic conversion of methanol to hydrocarbons (MTH)

Ntelane, Tau Silvester 03 1900 (has links)
The effect of microwave radiation on the prepared 0.5Fe/ZSM-5 catalysts as a post-synthesis modification step was studied in the methanol-to-hydrocarbons process using the temperature-programmed surface reaction (TPSR) technique. This was achieved by preparing a series of 0.5Fe/ZSM-5 based catalysts under varying microwave power levels (0–700 W) and over a 10 s period, after iron impregnating the HZSM-5 zeolite (Si/Al = 30 and 80). Physicochemical properties were determined by XRD, SEM, BET, FT-IR, C3H9N-TPSR, and TGA techniques. It was found that microwave radiation induced few changes in the bulk properties of the 0.5Fe/ZSM-5 catalysts, but their surface and catalytic behavior were distinctly changed. Microwave radiation enhanced crystallinity and mesoporous growth, decreased coke and methane formation, decreased the concentration of Brønsted acidic sites, and decreased surface area and micropore volume as the microwave power level was increased from 0 to 700 W. From the TPSR profiles, it was observed that microwave radiation affects the peak intensities of the produced hydrocarbons. Application of microwave radiation shifted the desorption temperatures of the MTH process products over the HZSM-5(30) and HZSM-5(80) based catalysts to lower and higher values respectively. The MeOH-TPSR profiles showed that methanol was converted to DME and subsequently converted to aliphatic and aromatic hydrocarbons. It is reasonable to suggest that microwave radiation would be an essential post-synthesis modification step to mitigate coke formation and methane formation and increase catalyst activity and selectivity. / Chemical Engineering / M. Tech. (Chemical Engineering)
12

On-surface synthesis of acenes – / Oberflächensynthese von Acenen – organische nanoelektronische Materialien als Einzelmoleküle untersucht

Krüger, Justus 09 January 2018 (has links) (PDF)
Acenes are a class of polycyclic aromatic hydrocarbons (PAH) with linearly fused benzene rings. They are widely considered as promising materials for organic and molecular electronics. However, larger molecules of this class possessing more than five rings are chemically extremely reactive and show a very low solubility. Hence, large acenes are difficult to handle, and the experimental data available to date is limited. The aim of this work is to show a very promising protocol of how acenes with different lengths can be stabilized and investigated on metallic surfaces. The experimental approach of on-surface synthesis is explored to generate the respective acenes directly on the metallic substrate via the reduction of suitable precursor molecules. High-resolution scanning probe microscopy (SPM) is employed at a temperature of 5 K to verify the chemical conversion at a single-molecule level. In the first part of this work, the on-surface synthesis of acenes is introduced via the example of tetracene (4-acene) formation on Cu(111). Precursors with 1,4-epoxy moieties preferably adsorb with their oxygen-rich site facing the substrate. Subsequently, they can be deoxygenated via annealing of the substrate or by single-molecule manipulation with the tip of the scanning probe microscope. In both cases, atomic force microscopy (AFM) measurements resolve the planar adsorption geometry of tetracene on the surface with atomic resolution. Based on these findings, scanning tunneling microscopy (STM) is employed to investigate the self-assembly patterns of on-surface generated anthracene (3-acene) and tetracene molecules after synthesis on Au(111). These measurements show intriguing organic nanostructures and supramolecular networks that can form at the metallic interface upon thermally-induced surface reactions. The second part of this thesis focuses on the electronic structure of acenes adsorbed on a metallic substrate. By applying the novel method of on-surface reduction, single and isolated hexacene (6-acene) molecules are investigated on Au(111). Scanning tunneling spectroscopy (STS) measurements indicate a weak interaction with the substrate and reveal five accessible molecular resonances at the organic-metal interface. The differential conductance maps with high spatial resolution at the respective resonant bias values compare well to elastic scattering quantum chemistry-based calculations. Finally, the experimental investigations of Br-substituted precursors show the stabilization of genuine unsubstituted heptacene (7-acene), as confirmed by imaging of the molecular structure via atomic-resolution STM. Accordingly, the precise characterization of this molecule via STS allows more insight into the electronic structure of adsorbed acenes with respect to their length. / Acene sind eine Klasse von polyzyklischen aromatischen Kohlenwasserstoffen mit linear kondensierten Benzolringen. Sie gelten weithin als vielversprechende Materialien für die organische und molekulare Elektronik. Jedoch sind die größeren Moleküle dieser Klasse mit mehr als fünf Ringen chemisch extrem reaktiv und zeigen eine sehr geringe Löslichkeit, daher gibt es bisher nur wenige experimentelle Untersuchungen ihrer Eigenschaften. Das Ziel dieser Arbeit ist es, Acene mit unterschiedlichen Längen auf einer metallischen Oberfläche stabilisieren und untersuchen zu können. Dabei wird der experimentelle Ansatz der Oberflächensynthese verfolgt und die jeweiligen Acene durch Reduktion von geeigneten Präkursoren direkt an einer metallischen Grenzfläche hergestellt. Hochauflösende Rastersondenmikroskopie an einzelnen Molekülen bei einer Temperatur von 5K nimmt dabei eine Schlüsselrolle im Nachweis der chemischen Umwandlung auf der Oberfläche ein. Im ersten Teil dieser Arbeit wird die Oberflächensynthese von Acenen am Beispiel von Tetracen (4-Acen) auf Cu(111) eingeführt. Die Ausgangsmoleküle mit funktionellen Gruppen adsorbieren bevorzugt mit ihrer sauerstoffreichen Seite auf dem Substrat und können dort sowohl thermisch als auch mithilfe der Spitze des Rastersondenmikroskops umgewandelt werden. In beiden Fällen wird die planare Adsorptionsgeometrie von Tetracen auf der Oberfläche mittels Rasterkraftmikroskopie mit atomarer Auflösung abgebildet. Darauf aufbauend wird Rastertunnelmikroskopie genutzt, um die Selbstassemblierung von Anthracen (3-Acen) und Tetracen nach der jeweiligen Synthese auf Au(111) zu untersuchen. Die Messungen zeigen unerwartete organische Nanostrukturen und supramolekulare Netzwerke, welche sich an der metallischen Grenzfläche durch die induzierte Oberflächenreduktion bilden können. Der zweite Teil dieser Arbeit beschäftigt sich mit den elektronischen Eigenschaften von adsorbierten Acenen. Durch die neuartige Methode der Oberflächenreduktion können einzelne Hexacene (6-Acen) auf Au(111) untersucht werden. Messungen basierend auf Rastertunnelspektroskopie geben Hinweise auf die schwache Wechselwirkung mit dem Substrat und zeigen fünf molekulare Eigenzustände, die im Experiment zugänglich sind. Die entsprechenden Abbildungen der differentiellen Leitfähigkeiten mit hoher Ortsauflösung sind in guter Übereinstimmung mit einer quantenmechanischen Modellierung. Schließlich wird die Stabilisierung von Heptacen (7-Acen) von Br-substituierten Präkursoren mittels Rastertunnelmikroskopie mit atomarer Auflösung gezeigt. Dadurch kann die elektronische Struktur von adsorbierten Acenen anhand ihrer Länge verglichen werden.
13

On-surface synthesis of acenes –: organic nanoelectronic materials explored at a single-molecule level

Krüger, Justus 05 December 2017 (has links)
Acenes are a class of polycyclic aromatic hydrocarbons (PAH) with linearly fused benzene rings. They are widely considered as promising materials for organic and molecular electronics. However, larger molecules of this class possessing more than five rings are chemically extremely reactive and show a very low solubility. Hence, large acenes are difficult to handle, and the experimental data available to date is limited. The aim of this work is to show a very promising protocol of how acenes with different lengths can be stabilized and investigated on metallic surfaces. The experimental approach of on-surface synthesis is explored to generate the respective acenes directly on the metallic substrate via the reduction of suitable precursor molecules. High-resolution scanning probe microscopy (SPM) is employed at a temperature of 5 K to verify the chemical conversion at a single-molecule level. In the first part of this work, the on-surface synthesis of acenes is introduced via the example of tetracene (4-acene) formation on Cu(111). Precursors with 1,4-epoxy moieties preferably adsorb with their oxygen-rich site facing the substrate. Subsequently, they can be deoxygenated via annealing of the substrate or by single-molecule manipulation with the tip of the scanning probe microscope. In both cases, atomic force microscopy (AFM) measurements resolve the planar adsorption geometry of tetracene on the surface with atomic resolution. Based on these findings, scanning tunneling microscopy (STM) is employed to investigate the self-assembly patterns of on-surface generated anthracene (3-acene) and tetracene molecules after synthesis on Au(111). These measurements show intriguing organic nanostructures and supramolecular networks that can form at the metallic interface upon thermally-induced surface reactions. The second part of this thesis focuses on the electronic structure of acenes adsorbed on a metallic substrate. By applying the novel method of on-surface reduction, single and isolated hexacene (6-acene) molecules are investigated on Au(111). Scanning tunneling spectroscopy (STS) measurements indicate a weak interaction with the substrate and reveal five accessible molecular resonances at the organic-metal interface. The differential conductance maps with high spatial resolution at the respective resonant bias values compare well to elastic scattering quantum chemistry-based calculations. Finally, the experimental investigations of Br-substituted precursors show the stabilization of genuine unsubstituted heptacene (7-acene), as confirmed by imaging of the molecular structure via atomic-resolution STM. Accordingly, the precise characterization of this molecule via STS allows more insight into the electronic structure of adsorbed acenes with respect to their length. / Acene sind eine Klasse von polyzyklischen aromatischen Kohlenwasserstoffen mit linear kondensierten Benzolringen. Sie gelten weithin als vielversprechende Materialien für die organische und molekulare Elektronik. Jedoch sind die größeren Moleküle dieser Klasse mit mehr als fünf Ringen chemisch extrem reaktiv und zeigen eine sehr geringe Löslichkeit, daher gibt es bisher nur wenige experimentelle Untersuchungen ihrer Eigenschaften. Das Ziel dieser Arbeit ist es, Acene mit unterschiedlichen Längen auf einer metallischen Oberfläche stabilisieren und untersuchen zu können. Dabei wird der experimentelle Ansatz der Oberflächensynthese verfolgt und die jeweiligen Acene durch Reduktion von geeigneten Präkursoren direkt an einer metallischen Grenzfläche hergestellt. Hochauflösende Rastersondenmikroskopie an einzelnen Molekülen bei einer Temperatur von 5K nimmt dabei eine Schlüsselrolle im Nachweis der chemischen Umwandlung auf der Oberfläche ein. Im ersten Teil dieser Arbeit wird die Oberflächensynthese von Acenen am Beispiel von Tetracen (4-Acen) auf Cu(111) eingeführt. Die Ausgangsmoleküle mit funktionellen Gruppen adsorbieren bevorzugt mit ihrer sauerstoffreichen Seite auf dem Substrat und können dort sowohl thermisch als auch mithilfe der Spitze des Rastersondenmikroskops umgewandelt werden. In beiden Fällen wird die planare Adsorptionsgeometrie von Tetracen auf der Oberfläche mittels Rasterkraftmikroskopie mit atomarer Auflösung abgebildet. Darauf aufbauend wird Rastertunnelmikroskopie genutzt, um die Selbstassemblierung von Anthracen (3-Acen) und Tetracen nach der jeweiligen Synthese auf Au(111) zu untersuchen. Die Messungen zeigen unerwartete organische Nanostrukturen und supramolekulare Netzwerke, welche sich an der metallischen Grenzfläche durch die induzierte Oberflächenreduktion bilden können. Der zweite Teil dieser Arbeit beschäftigt sich mit den elektronischen Eigenschaften von adsorbierten Acenen. Durch die neuartige Methode der Oberflächenreduktion können einzelne Hexacene (6-Acen) auf Au(111) untersucht werden. Messungen basierend auf Rastertunnelspektroskopie geben Hinweise auf die schwache Wechselwirkung mit dem Substrat und zeigen fünf molekulare Eigenzustände, die im Experiment zugänglich sind. Die entsprechenden Abbildungen der differentiellen Leitfähigkeiten mit hoher Ortsauflösung sind in guter Übereinstimmung mit einer quantenmechanischen Modellierung. Schließlich wird die Stabilisierung von Heptacen (7-Acen) von Br-substituierten Präkursoren mittels Rastertunnelmikroskopie mit atomarer Auflösung gezeigt. Dadurch kann die elektronische Struktur von adsorbierten Acenen anhand ihrer Länge verglichen werden.
14

STM investigation of model systems for atomic and molecular scale electronics

Eisenhut, Frank 09 August 2019 (has links)
In this thesis, I explore model systems for planar atomic and molecular scale electronics on surfaces. The nanoscale systems are experimentally investigated by combining scanning tunneling microscopy (STM) with atomic and molecular manipulation. Furthermore, the on-surface chemical synthesis of molecules, as well as the construction of atomic wires on selected surfaces is applied. Polycyclic aromatic hydrocarbon (PAH) molecules play a key role in this work, as they can provide the functionality of the molecular scale devices. In the first part of this work, I investigate different PAH´s on the Au(111) surface. The precursor molecules form supramolecular assemblies and the on-surface synthesis approach to obtain the desired molecular products is used. In particular, bisanthene molecules via a cyclodehydrogenation reaction and the non-alternant polyaromatic hydrocarbon diindenopyrene after a thermally induced debromination followed by selective ring-closure to form a five-membered ring are obtained. An interesting surface for future applications is the passivated silicon Si(001)-(2x1):H. I prepare this surface and characterize the substrate. The surface has a band gap and molecules are electronically decoupled from the semiconducting substrate due to the passivation layer. Furthermore, atomic defects on this substrate, so called dangling bonds (DB´s), have defined electronic states. I show that it is possible to produce DB defects controllably by applying voltage pulses using the tip of the STM and achieve with this method atomic wires with DB´s. The third part of this thesis deals with the investigation of molecular structures on Si(001)-(2x1):H. I present the generation of hexacene by a surface assisted reduction. This result can be generalized for the generation of PAH´s after deoxygenation on passivated silicon and can open new routes to design functional molecules on this substrate. Secondly, one-dimensional chains of acetylbiphenyl (ABP) molecules are explored. They interact via its pi-stacked phenyl rings that are considered as conducting channel. Finally, I demonstrate that a single ABP molecule acts as a switch, as one can reversibly passivate and depassivate a single DB by a hydrogen transfer. In the last part of this work, I test the new low-temperature four-probe STM located at CEMES-CNRS in Toulouse. This machine is constructed for the development of molecular scale devices. For this purposes an atomic precision is needed for all the different tips at the same time and a high stability of this scanning probe microscope must be achieved. I perform a manipulation experiment of molecules to test the necessary submolecular precision. For that reason, supramolecular assemblies of ABP molecules on Au(111) are imaged and manipulated by any of the four tips using the lateral manipulation mode as well as by voltage pulses. The stability of the system is shown, as all tips of the four-probe STM work independently in parallel.:1 Introduction 2 Fundamentals of scanning tunneling microscopy 2.1 The working principle 2.2 Scanning tunneling spectroscopy 2.3 Manipulation modes 2.4 Modeling 3 Experimental setup, materials and methods 3.1 The scanning tunneling microscope 3.2 The Au(111) surface 3.3 Further experimental details 4 On-surface synthesis of molecules 4.1 Introduction 4.2 Generation of a periacene 4.3 Investigating a non-alternant PAH 4.4 Conclusion 5 The passivated silicon surface 5.1 Introduction 5.2 Preparation of passivated silicon 5.3 Characterization of Si(001)-(2x1):H 5.4 Tip-induced formation of dangling bonds 5.5 Conclusion 6 Organic molecules on passivated silicon 6.1 Introduction 6.2 Hexacene generated on passivated silicon 6.3 Acetylbiphenyl on passivated silicon 6.4 Conclusion 7 Testing a low temperature four-probe STM 7.1 Introduction 7.2 The four-probe STM 7.3 Performance test of the four-probe STM on Au(111) 7.4 Manipulation of ABP assemblies 7.5 Conclusion 8 Summary and outlook 9 Appendix 9.1 Dibromo-dimethyl-naphtalene on Au(111) 9.2 Epiminotetracene on Au(111) Bibliography Curriculum vitae Scientific contributions Acknowledgement Statement of authorship / In dieser Arbeit untersuche ich Modellsysteme für planare atomare und molekulare Elektronik auf Oberflächen. Die Systeme auf der Nanoskala werden experimentell durch die Kombination aus Rastertunnelmikroskopie (RTM) und atomarer sowie molekularer Manipulation untersucht. Moleküle werden durch die oberflächenchemische Synthese generiert und atomare Drähte auf ausgewählten Oberflächen hergestellt. Polyzyklisch aromatische Kohlenwasserstoff (PAK) Moleküle spielen bei dieser Arbeit eine Schlüsselrolle, da sie die passiven und aktiven Elemente auf molekularem Maßstab darstellen können. Im ersten Teil dieser Arbeit untersuche ich verschiedene PAK´s auf der Au(111)-Oberfläche. Die Präkursoren bilden dabei supramolekulare Anordnungen und ich nutze die Oberflächensynthese, um die gewünschten molekulare Produkte zu erhalten. Im Speziellen habe ich Bisanthen-Moleküle über eine Zyklodehydrogenationsreaktion und das nicht-alternierende PAK Diindenopyren erzeugt. Dieses entsteht nach einer thermisch-induzierten Debromierung gefolgt von selektivem Ringschluss, sodass ein fünfgliedriger Ring gebildet wird. Eine interessante Oberfläche für zukünftige Anwendungen ist das passivierte Silizium Si(001)-(2x1):H. Ich habe diese Oberfläche erfolgreich präpariert und das Substrat charakterisiert. Die Oberfläche hat eine Bandlücke und Moleküle sind elektronisch von dem halbleitenden Substrat durch die Passivierungsschicht entkoppelt. Desweiteren haben atomare Defekte dieser Oberfläche, sogenannte Dangling-Bond´s (DB’s), definierte elektronische Zustände innerhalb der Bandlücke. Ich habe DB´s kontrolliert durch Spannungspulse mithilfe der Spitze des RTM erzeugt und stelle so atomare Drähte mit DB Defekten her. Der dritte Teil dieser Arbeit befasst sich mit der Untersuchung molekularer Strukturen auf Si(001)-(2x1):H. Die Erzeugung von Hexacen auf passivierten Silizium durch eine oberflächenunterstützte Reduktion wird gezeigt. Dieses Ergebnis ist eine neue Strategie für die Herstellung von PAK´s nach der Deoxygenierung und eröffnet neue Wege um funktionelle Moleküle auf diesem Substrat zu entwerfen. Zweitens zeige ich, dass Acetylbiphenyl (ABP) Moleküle eindimensionale Ketten auf dieser Oberfläche bilden. Diese interagieren über ihre Phenylringe, welche als leitender Kanal gesehen werden können. Zudem kann ein einzelnes ABP Molekül wie ein Schalter genutzt werden, da es reversibel einzelne DB´s durch Wasserstoffübertragung passivieren und depassivieren kann. Im letzten Teil dieser Arbeit wird das neue Tieftemperatur Vier-Sonden RTM, welches sich in CEMES-CNRS in Toulouse befindet, getestet. Diese Maschine ist für die Herstellung und Untersuchung von Geräten im molekularem Maßstab konstruiert worden. Zu diesem Zweck ist eine atomare Präzision für die verschiedenen Spitzen zur gleichen Zeit erforderlich und eine hohe Stabilität des Rastersondenmikroskops muss gewährleistet sein. Ich führe ein Manipulationsversuch an Molekülen durch, um die notwendige submolekulare Präzision zu testen. Dafür werden supramolekulare Anordnungen von ABP-Molekülen auf Au(111) abgebildet und die Strukturen mit jeder der vier Spitzen im lateralen Manipulationsmodus und durch Spannungpulse bewegt. Damit habe ich die Stabilität des Systems getestet und konnte zeigen, dass alle Spitzen des Systems unabhängig voneinander parallel arbeiten.:1 Introduction 2 Fundamentals of scanning tunneling microscopy 2.1 The working principle 2.2 Scanning tunneling spectroscopy 2.3 Manipulation modes 2.4 Modeling 3 Experimental setup, materials and methods 3.1 The scanning tunneling microscope 3.2 The Au(111) surface 3.3 Further experimental details 4 On-surface synthesis of molecules 4.1 Introduction 4.2 Generation of a periacene 4.3 Investigating a non-alternant PAH 4.4 Conclusion 5 The passivated silicon surface 5.1 Introduction 5.2 Preparation of passivated silicon 5.3 Characterization of Si(001)-(2x1):H 5.4 Tip-induced formation of dangling bonds 5.5 Conclusion 6 Organic molecules on passivated silicon 6.1 Introduction 6.2 Hexacene generated on passivated silicon 6.3 Acetylbiphenyl on passivated silicon 6.4 Conclusion 7 Testing a low temperature four-probe STM 7.1 Introduction 7.2 The four-probe STM 7.3 Performance test of the four-probe STM on Au(111) 7.4 Manipulation of ABP assemblies 7.5 Conclusion 8 Summary and outlook 9 Appendix 9.1 Dibromo-dimethyl-naphtalene on Au(111) 9.2 Epiminotetracene on Au(111) Bibliography Curriculum vitae Scientific contributions Acknowledgement Statement of authorship
15

Etude théorique de la dissociation de H2 et CH4 sur surfaces métalliques / Theoretical studies of H2 and CH4 dissociation on metal surfaces

Shen, Xiangjian 30 October 2012 (has links)
L’étude de la dissociation de molécules poly-atomiques en surface est d’une importance à la fois fondamentale et industrielle. La compréhension du mécanisme et la dynamique réactionnelle sous-jacents représente un défi. Comme un système modèle, la dissociation de méthane sur la surface de nickel a fait l’objet de nombreuses études pour élucider les chemins de réaction et le transfert d’énergie parmi les différents degrés de liberté durant la réaction. La mode-spécifique ou liaison-spécifique réactivité pour la dissociation de CH4 sur Ni(111) et Ni(100) ont été mise en évidence récemment par des expériences de pointe du jet moléculaire. Jusqu’à présent, les études théoriques de la dynamique réactionnelle ont été effectuées avec un modèle simplifié dans lequel CH4 est décrit comme une molécule pseudo-diatomique. Le concept d’un groupe méthyle spectateur introduit dans un tel modèle impose des contraintes drastiques. Par exemple, l’indiscernabilité des quatre liaisons C-H de méthane est violée par le fait que la liaison C-H capable de se dissocier se singularise par rapport aux trois autres liaisons inertes. En réalité, n’importe quelle des quatre liaisons est susceptible de se dissocier. Par ailleurs, l’unique mode vibrationnel du modèle pseudo-diatomique ne ressemble à aucun des quatre modes vibrationnels principaux du méthane, qui décrivent tous des mouvements collectifs de plusieurs atomes. Lorsque tous les degrés de liberté sont pris en compte, la dimensionnalité de la surface de l’énergie potentielle pour CH4/Ni(111) est très élevée (15 degrés de liberté pour CH4 et certains degrés de liberté du substrat). Construire une surface de l’énergie potentielle fiable à une telle grande dimension est, en soi, un grand défi. A notre connaissance, ce défi n’a jamais été tenté auparavant pour quelconque réaction d’une molécule poly-atomique sur une surface métallique. En utilisant un champ de force réactif, nous avons développé, dans le présent travail, une surface de l’énergie potentielle qui prend en compte tous les 15 degrés de liberté de CH4 ainsi que ceux des 3 premières couches de NI(111). Des simulations de dynamique moléculaire ont été effectuées pour étudier la dynamique réaction de CH4 sur Ni(111) aussi bien dans son état fondamental vibrationnel que dans un état excité. Ces simulations ont permis de révéler des comportements dynamiques inattendus et très intéressants. / In the present work, we undertook a challenging task, i.e., construction a full-dimension potential energy surface (PES) for a benchmark poly-atomic molecular surface reaction, CH4/Ni(111), by using a reactive force field. Careful appraisal of the PES was made in order to establish the validity of the PES. The differences between the results for the transition state (dissociation barriers and structures) given by our PES and those by DFT calculations do not exceed 15%. The molecular dynamics simulation results obtained by using our PES are compared to experimental results for CH4 dissociation probability on Ni(111). For the vibrationally excited state, v3 (v=1, J=0), the agreement between our simulation results and the experimental ones is excellent. For the ground state, the sticking coefficient is somehow over-estimated because of the under-estimation of the dissociation barrier by about 150 meV with our reactive force field. Nevertheless, the overall agreement between simulation and experiment is pretty good. Within the help of the full-dimensional PES, we have extensively studied some important aspects of reaction dynamics, e.g., the effects of surface impact position, surface temperature, vibrationally excited state, rotationally excited states etc. For CH4 in ground state (v=0, J=0), the investigation of the effect of CH4 impact position shows that the top site is the most reactive one. The surface temperature strongly affects the reactivity of methane, especially in the region of the low incident energy near to the dissociation threshold, while in the high incident energy region, the effect is less important. For CH4 v3 (v=1, J=0), an important coupling between rotation and vibration is found. The rotation of CH4 can enhance its reactivity in the following way. In its ground state (v=0, J=0), CH4 does not rotate during its flight to the surface. In this case, only one of the two lowest C-H bonds pointing initially toward the surface can be cleaved while the two other bonds never break. In v3 (v=1, J=0) vibrational state, due to the rotation induced by vibration-rotation coupling, any of the four H atoms can be dissociated even if it forms a C-H bond which has an unfavorable initial orientation (i.e., pointing away from the substrate). The rotation of CH4 induced by vibration-rotation coupling near the substrate allows for bringing an unfavorable initial orientation of C-H bond to the right one required by a transition state (TS) during the adsorbate’s approaching to the substrate. As the enhanced reactivity of vibrationally excited molecules is concerned, the intuitively limpid and overwhelmingly accepted explanation is that the vibration-induced bond stretching helps bond breaking. Our simulation results show clearly that the vibration-induced CH4 rotation contributes an important part to the enhanced reactivity of a v3 (v=1, J=0) vibrationally excited CH4. A series of simulations to determine the sticking curves for CH4 in the vibrational ground state (ν=0) but excited to higher rotational levels (J=0-12) have also been performed. Due to its small level spacing, the lowest rotational excited states (J=1-3) of CH4 do not affect its reactivity on Ni(111) as observed experimentally. We found that rotation enhances significantly CH4 reactivity on Ni(111) with a deposited rotational energy amounting only to 12% of the dissociation barrier. Moreover, in a hypothetic simulation, we found also very striking evidences that rotation can even promote better dissociation of CH4 on Ni(111) than vibration. In a vibrationally excited CH4, its C-H bonds undergo alternate stretching and compressing and the latter hinders dissociation. In this case, the reactivity is inevitably modulated by vibration phase. However, the centrifugal force due to rotation tends always to stretch the C-H bonds for CH4 in rotationally excited states. / 多原子气相分子的分解,不仅在物理,化学及相关学科有着基本的重要性,而且可以促进工业进程,如工业制氢气。对其涉及的反应,即化学键的断裂与形成,在理解其反应机制和动力学上更是一项挑战。作为多原子气相-固相化学反应中最为典型的反应,甲烷分子在金属镍表面的分解,已经被广泛地研究从而理解其在动力学过程中的能量转化和反应路径。最近,选态分子束实验报道了有关甲烷在镍表面分解反应的重要特征,即模式选择性和化学键选择性。从理论角度来看,以前大多数理论研究都是基于一个简化模型,即将甲烷分子看成是一个赝双原子分子(CH4=RH,其中R=CH3)。在该简化模型中,将甲基团当做一个“spectator”会导致严重的限制性,如四个碳氢键的不可分辨性就被破坏。因为在简化模型中,只有一个可分解的碳氢键而其他三个碳氢键则被保护起来;而在实际的分解反应过程中,甲烷分子的任何一个碳氢化学键应该都有概率被分解掉。此外,在该赝双原子分子模型中,单键伸长振动模式不能类比于甲烷的四个基本振动模式,因为其每种基本振动模式都涉及多个原子的复合运动。如果不将甲烷处理成赝双原子分子,那么该体系(CH4/Ni(111))的势能面的维度会很高,即甲烷的15 个自由度加上部分基地原子的自由度。欲建立一个如此高维度而且又可靠的势能面,本身就是一个值得挑战的研究任务。据我们所知,目前对多原子分子在金属表面反应的高维度势能面的报道几乎没有。在本论文中,我们运用键序反应力场(REBO),为体系CH4/Ni(111),首次建立起一个全维度的势能面。该势能面的维度包含甲烷的15 个自由度和3 层基地原子的自由度。在经典分子动力学(和准经典分子动力学)模拟下,我们研究了甲烷处于基态和激发态时在金属表面的分解活性,并发现了一些非常有趣的结果。本论文包含以下六章:第一章:简单介绍了甲烷在过渡金属表面分解的最新进展。在选态分子束试验报道中,我们介绍了一些有关该反应的重要特征,如模式选择性,化学键选择性,表面温度效应,空间效应,旋转激发效应等。在理论工作方面,主要介绍了两个理论研究小组近期在简化模型下的一些量子动力学结果。第二章:对本文所运用的理论方法和近似做了基本的介绍。这些方法主要归纳于两类:i)电子结构计算;ii) 分子动力学模拟。我们重点介绍了这些方法和近似的特征。第三章:我们运用二阶矩近似力场(SMA)和键序反应力场(REBO)模拟了氢分子在金属钯表面的分解反应, 从而验证反应力场在模拟表面化学反应的适用性。该章讨论了在参数化反应力场时的一些影响因素,如有效数据库大小,不同排斥势以及长程作用项等,为对复杂体系的研究提供了有效的帮助。第四章:基于键序反应力场(REBO),我们首次为CH4/Ni(111) 体系建立起一个全维度势能面(PES)。同时我们对该势能面(REBO(PES))做了全面评估,如比较势能面(REBO(PES))与DFT计算得到的过渡状态结构和与之对应的分解势垒,比较两者对于不同形式相互作用给出的势能变化等。此外,我们还直接模拟了甲烷在基态时的活性,其模拟结果与实验有着很好的符合度,从而进一步地说明了该势能面(REBO(PES))的可靠性。第五章:在全维度势能面下,我们深入地研究了甲烷处于不同状态时在镍表面分解的反应活性,即基态(v=0,J=0),反对称振动态v3 (v=1,J=0)和旋转激发态(v=0,J=1-12)。对于基态的甲烷,我们定性并定量地分析了表面碰撞位置,表面温度对其分解概率的影响。对于反对称振动态的甲烷,我们观察到振动激发态的甲烷分子反应活性比基态甲烷的反应活性要大大地增强。究其根源在于,平动能量不易转换至旋转自由度,而振动能量则非常容易转入到旋转自由度。我们利用三个定量参数详细地阐述了这种振动耦合转动的重要性。此外,对于甲烷处于旋转激发态时,我们发现其激发状态非常有利于甲烷的分解,尽管其旋转能量只有分解势垒的12%。更为惊奇的是,对于甲烷分子而言,其旋转激发态比振动激发态更有利于其分解。其相应的物理解释是,对于振动激发的甲烷,它的碳氢键处于伸长与收缩的交替中,而后者却阻止其分解。对于旋转激发中的甲烷,其离心力一直促使碳氢键的伸长。第六章:总结和展望。我们总结了本文的主要结论以及给出一些将来需要进行的工作,如同位素效应等。

Page generated in 0.1065 seconds