1 |
Phase Shift Modulation Techniques for Bidirectional Onboard Chargers in Electric VehiclesYuan, Jiaqi January 2023 (has links)
Bidirectional onboard chargers (OBCs) are becoming mainstream commercial charging equipment for electric vehicles (EVs) because of their compactness, flexibility, and demand-response capabilities for power backup. This thesis focuses on the novel phase shift (PS) modulation techniques for efficiency improvement for bidirectional OBCs, including two-stage onboard chargers (TSOBCs) and single-stage onboard chargers (SSOBCs).
A comprehensive overview and investigation of the state-of-the-art solutions of bidirectional OBCs are presented. It reviews the current industrial status, industrial applications, and future trends and challenges. A detailed overview of the promising topologies for bidirectional OBCs, including two-stage and single-stage structures, is also discussed in this thesis.
Traditional PS modulation has been widely used in the back-end DC/DC converters of the TSOBCs because of its simple implementation. However, it is challenging to keep high efficiency at boundary operating points within wide specifications. Therefore, to improve efficiency at the boundary point for TSOBCs, the hybrid multiple phase shift (HMPS) modulation technique with minimal peak current optimization is presented to maximize the zero-voltage switching (ZVS) range. Compared to traditional single phase shift (SPS) modulation, the experimental results verify that the presented HMPS modulation strategy provides 1%-2% higher efficiency at the boundary points.
On the other hand, an improved compact SSOBC topology and novel PS modulation techniques are proposed. Since the traditional PS modulation is challenging for AC/DC converters to keep a unity power factor (PF), novel PS modulation techniques are presented for the proposed SSOBC. Firstly, a sinusoidal single phase shift (SSPS) modulation introduces a sinusoidal phase shift to maintain a high PF and high efficiency within a wide operating point. However, due to the high current at the zero-crossing point of the grid voltage of the SSPS modulation, the novel adaptive sinusoidal single phase shift (ASSPS) modulation is presented to address this issue, which reduces conduction loss and increases efficiency. Secondly, based on the ASSPS modulation, the adaptive sinusoidal extended phase shift (ASEPS) modulation with minimal peak current optimization is presented to introduce one more degree of freedom to extend the ZVS flexibility, which reduces switching loss. Moreover, the minimal peak current optimization reduces transformer current, further decreasing conduction losses. Therefore, the power loss is minimized.
Finally, this thesis presents the general design guideline of a 6 kW Silicon Carbide (SiC)-based bidirectional SSOBC, contributing to the further development of bidirectional SSOBC application. Experimental results verify the operating principle and high PF of the proposed SSPS, ASSPS, and ASEPS modulation. 1 kW experimental testing has validated that the peak efficiency is 95.3% with ASSPS modulation and 95.9% with ASEPS modulation. Compared to the existing pulse width modulation (PWM), the ASSPS modulation increased efficiency by 1.1%, and ASEPS modulation further increased by 1.7%. / Thesis / Doctor of Philosophy (PhD)
|
Page generated in 0.0591 seconds