• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fourier-based reconstruction of ultrafast sectorial images in ultrasound / Reconstruction dans le domaine de Fourier des images sectorielles ultrarapides par ultrasons

Zhang, Miaomiao 16 December 2016 (has links)
L'échocardiographie est une modalité d'imagerie sûre, non-invasive, qui est utilisée pour évaluer la fonction et l'anatomie cardiaque en routine clinique. Mais la cadence maximale d’imagerie atteinte est limitée en raison de la vitesse limitée du son. Afin d’augmenter la fréquence d'image, l'utilisation d’ondes planes ou d’ondes divergentes en transmissinon a été proposée afin de réduire le nombre de tirs nécessaires à la reconstruction d'une image. L'objectif de cette thèse consiste à développer un procédé d'imagerie par ultrasons ultra-rapide en échocardiographie 2/3D basé sur une insonification par ondes divergentes et réalisant une reconstruction dans le domaine de Fourier. Les contributions principales obtenues au cours de la thèse sont décrites ci-dessous. La première contribution de cette thèse concerne un schéma de transmission dichotomique pour l'acquisition linéaire en analysant mathématiquement la pression générée. Nous avons ensuite montré que ce système de transmission peut améliorer la qualité des images reconstruites pour une cadence constante en utilisant les algorithmes de reconstruction conventionnels. La qualité des images reconstruites a été évaluée en termes de résolution et de contraste au moyen de simulations et acquisitions expérimentales réalisées sur des fantômes. La deuxième contribution concerne le développement d'une nouvelle méthode d'imagerie 2D en ondes plane opérant dans le domaine de Fourier et basée sur le théorème de la coupe centrale. Les résultats que nous avons obtenus montrent que l'approche proposée fournit des résultats très proches de ceux fournit par les méthodes classiques en termes de résolution latérale et contraste de l'image. La troisième contribution concerne le développement d'une transformation spatiale explicite permettant d'étendre les méthodes 2D opérant dans le domaine de Fourier d'une acquisition en géométrie linéaire avec des ondes planes à la géométrie sectorielle avec des ondes divergente en transmission. Les résultats que nous avons obtenus à partir de simulations et d'acquisitions expérimentales in vivo montrent que l'application de cette extension à la méthode de Lu permet d'obtenir la même qualité d’image que la méthode spatiale de Papadacci basée sur des ondes divergentes, mais avec une complexité de calcul plus faible. Finalement, la formulation proposée en 2D pour les méthodes ultra-rapides opérant dans le domaine de Fourier ont été étendues en 3D. L'approche proposée donne des résultats compétitifs associés à une complexité de calcul beaucoup plus faible par rapport à la technique de retard et somme conventionnelle. / Three-dimensional echocardiography is one of the most widely used modality in real time heart imaging thanks to its noninvasive and low cost. However, the real-time property is limited because of the limited speed of sound. To increase the frame rate, plane wave and diverging wave in transmission have been proposed to drastically reduce the number of transmissions to reconstruct one image. In this thesis, starting with the 2D plane wave imaging methods, the reconstruction of 2D/3D echocardiographic sequences in Fourier domain using diverging waves is addressed. The main contributions are as follows: The first contribution concerns the study of the influence of transmission scheme in the context of 2D plane wave imaging. A dichotomous transmission scheme was proposed. Results show that the proposed scheme allows the improvement of the quality of the reconstructed B-mode images at a constant frame rate. Then we proposed an alternative Fourier-based plane wave imaging method (i.e. Ultrasound Fourier Slice Beamforming). The proposed method was assessed using numerical simulations and experiments. Results revealed that the method produces very competitive image quality compared to the state-of-the-art methods. The third contribution concerns the extension of Fourier-based plane wave imaging methods to sectorial imaging in 2D. We derived an explicit spatial transformation which allows the extension of the current Fourier-based plane wave imaging techniques to the reconstruction of sectorial scan using diverging waves. Results obtained from simulations and experiments show that the derived methods produce competitive results with lower computational complexity when compared to the conventional delay and sum (DAS) technique. Finally, the 2D Fourier-based diverging wave imaging methods are extended to 3D. Numerical simulations were performed to evaluate the proposed method. Results show that the proposed approach provides competitive scores in terms of image quality compared to the DAS technique, but with a much lower computational complexity.
2

Imagerie ultrasonore ultra-rapide dédiée à la quantification 3D du mouvement cardiaque / Ultrafast ultrasound imaging for 3-D cardiac motion estimation

Joos, Philippe 22 December 2017 (has links)
Cette thèse porte sur le développement et l’évaluation de techniques d’imagerie en échocardiographie. L’objectif est de proposer des méthodes d’imagerie ultrasonore ultrarapide pour estimer le mouvement cardiaque 2-D et 3-D.Première modalité d’imagerie du cœur, l’échocardiographie conventionnelle permet la mesure des déformations myocardiques à 80 images/s. Cette cadence d’imagerie est insuffisante pour quantifier les mouvements de la totalité du myocarde lors de tests d’efforts, utiles en évaluation clinique, au cours desquels le rythme cardiaque est augmenté. De plus, la résolution temporelle actuelle en échocardiographie 3-D limite ses applications, pourtant essentielles pour une caractérisation complète du cœur.Les contributions présentées ici sont 1) le développement et l’évaluation, pour l’application cardiaque, d’une méthode originale d’estimation de mouvement 2-D par imagerie ultrarapide et marquage des images, 2) l’étude de faisabilité de la mesure globale des déformations cardiaques avec une méthode innovante d’imagerie ultrasonore ultrarapide 2-D et 3) la généralisation de cette approche en 3-D pour l’imagerie des volumes cardiaques à haute résolution temporelle. Cette technique est basée sur l’émission d’ondes divergentes, et l’intégration d’une compensation de mouvement dans le processus de formation des volumes cardiaques.La méthode proposée permet l’estimation des mouvements cardiaques 2-D et l’échocardiographie ultrarapide 3-D. L’évaluation de notre approche pour la quantification des déformations myocardiques locales 2-D et 3-D pourrait permettre de proposer des pistes innovantes pour poursuivre nos études et améliorer le diagnostic en routine clinique / This PhD work focuses on the development and the evaluation of imaging techniques in echocardiography. Our objective is to propose ultrafast ultrasound imaging methods for 2-D and 3-D cardiac motion estimations.Echocardiography is one of the most widespread modality for cardiovascular imaging. Conventional clinical scanners allow measurement of myocardial velocities and deformations at 80 images / s. In some situations, it can be recommended to increase the heart rate during a stress echocardiographic examination. Motion estimation of the whole myocardium at such heart rates is challenging with the conventional imaging systems. In addition, the low temporal resolution of the current conventional 3-D echocardiography limits quantitative applications, which would be needed for a complete characterization of the heart.The three contributions presented here are 1) the development and evaluation of an original method for 2-D cardiac motion estimation, with ultrafast imaging and image tagging, 2) the feasibility study of the global myocardial deformation measurement using an innovative 2-D ultrafast ultrasound imaging method and 3) the generalization of this approach in three dimensions for high frame-rate 3-D echocardiography. This method is based on the transmission of divergent waves and the integration of motion compensation, during the imaging process, to produce high-quality volumetric images of the heart.The proposed method allows 2-D cardiac motion estimation and 3-D echocardiography at high frame-rate. The evaluation of our approach for local 2-D and 3-D myocardial deformation measurements should permit to conduct further study in order to improve medical diagnosis
3

Caractérisation de vortex intraventriculaires par échographie Doppler ultrarapide

Faurie, Julia 07 1900 (has links)
Les maladies cardiaques sont une cause majeure de mortalité dans le monde (la première cause en Amérique du nord [192]), et la prise en charge de ses maladies entraîne des coûts élevés pour la société. La prévalence de l’insuffisance cardiaque augmente fortement avec l’âge, et, avec une population vieillissante, elle va demeurer une préoccupation croissante dans le futur, non seulement pour les pays industrialisés mais aussi pour ceux en développement. Ainsi il est important d’avoir une bonne compréhension de son mécanisme pour obtenir des diagnostics précoces et un meilleur prognostic pour les patients. Parmi les différentes formes d’insuffisance cardiaque, on trouve la dysfonction diastolique qui se traduit par une déficience du remplissage du ventricule. Pour une meilleure compréhension de ce mécanisme, de nombreuses études se sont intéressées au mouvement du sang dans le ventricule. On sait notamment qu’au début de la diastole le flux entrant prend la forme d’un anneau vortical (ou vortex ring). La formation d’un vortex ring par le flux sanguin après le passage d’une valve a été décrite pour la première fois en 1513 par Léonard de Vinci (Fig. 0.1). En effet après avoir moulé l’aorte dans du verre et ajouter des graines pour observer le flux se déplaçant dans son fantôme, il a décrit l’apparition du vortex au passage de la valve aortique. Ces travaux ont pu être confirmés 500 ans plus tard avec l’apparition de l’IRM [66]. Dans le ventricule, le même phénomène se produit après la valve mitrale, c’est ce qu’on appelle le vortex diastolique. Or, le mouvement d’un fluide (ici le sang) est directement relié a son environnement : la forme du ventricule, la forme de la valve, la rigidité des parois... L’intérêt est donc grandissant pour étudier de manière plus approfondie ce vortex diastolique qui pourrait apporter de précieuses informations sur la fonction diastolique. Les modalités d’imagerie permettant de le visualiser sont l’IRM et l’échographie. Cette thèse présente l’ensemble des travaux effectués pour permettre une meilleure caractérisation du vortex diastolique dans le ventricule gauche par imagerie ultrasonore Doppler. Pour suivre la dynamique de ce vortex dans le temps, il est important d’obtenir une bonne résolution temporelle. En effet, la diastole ventriculaire dure en moyenne 0.5 s pour un coeur humain au repos, une cadence élevée est donc essentielle pour suivre les différentes étapes de la diastole. La qualité des signaux Doppler est également primordiale pour obtenir une bonne estimation des vitesses du flux sanguin dans le ventricule. Pour étudier ce vortex, nous nous sommes intéressés à la mesure de sa vorticité en son centre v et à l’évolution de cette dernière dans le temps. Le travail se divise ainsi en trois parties, pour chaque un article a été rédigé : 1. Développement d’une séquence Doppler ultrarapide : La séquence se base sur l’utilisation d’ondes divergentes qui permettent d’atteindre une cadence d’image élevée. Associée à la vortographie, une méthode pour localiser le centre du vortex diastolique et en déduire sa vorticité, nous avons pu suivre la dynamique de la vorticité dans le temps. Cette séquence a permis d’établir une preuve de concept grâce à des acquisitions in vitro et in vivo sur des sujets humains volontaires. 2. Développement d’une séquence triplex : En se basant sur la séquence ultrarapide Doppler, on cherche ici à ajouter des informations supplémentaires, notamment sur le mouvement des parois. La séquence triplex permet non seulement de récupérer le mouvement sanguin avec une haute cadence d’images mais aussi le Doppler tissulaire. Au final, nous avons pu déduire les Doppler couleur, tissulaire, et spectral, en plus d’un Bmode de qualité grâce à la compensation de mouvement. On peut alors observer l’interdépendance entre la dynamique du vortex et celle des parois, en récupérant tous les indices nécessaires sur le même cycle cardiaque avec une acquisition unique. 3. Développement d’un filtre automatique : La quantification de la vorticité dépend directement des vitesses estimées par le Doppler. Or, en raison de leur faible amplitude, les signaux sanguins doivent être filtrés. En effet lors de l’acquisition les signaux sont en fait une addition des signaux sanguins et tissulaires. Le filtrage est une étape essentielle pour une estimation précise et non biaisée de la vitesse. La dernière partie de ce doctorat s’est donc concentrée sur la mise au point d’un filtre performant qui se base sur les dimensions spatiales et temporelles des acquisitions. On effectue ainsi un filtrage du tissu mais aussi du bruit. Une attention particulière a été portée à l’automatisation de ce filtre avec l’utilisation de critères d’information qui se basent sur la théorie de l’information. / Heart disease is one of the leading causes of death in the world (first cause in North America [192]), and causes high health care costs for society. The prevalence of heart failure increases dramatically with age and, due to the ageing of the population, will remain a major concern in the future, not only for developed countries, but also for developing countries. It is therefore crucial to have a good understanding of its mechanism to obtain an early diagnosis and a better prognosis for patients. Diastolic dysfunction is one of the variations of heart failure and leads to insufficient filling of the ventricle. To better understand the dysfunction, several studies have examined the blood motion in the ventricle. It is known that at the beginning of diastole, the filling flow creates a vortex pattern known as a vortex ring. This development of the ring by blood flow after passage through a valve was first described in 1513 by Leonardo Da Vinci (Fig. 0.1). After molding a glass phantom in an aorta and adding seeds to visually observe the flow through the phantom, he could describe the vortex ring development of the blood coming out of the aortic valve. His work was confirmed 500 years later with the emergence of MRI [66]. The same pattern can be observed in the left ventricle when the flow emerges from the mitral valve, referred to as the diastolic vortex. The flow motion (in our case the blood) is directly related to its environment : shape of the ventricle, shape of the valve, stiffness of the walls... There is therefore a growing interest in further studies on this diastolic vortex that could lead to valuable information on diastolic function. The imaging modalities which can be used to visualize the vortex are MRI and ultrasound. This thesis presents the work carried out to allow a better characterization of the diastolic vortex in the left ventricle by Doppler ultrasound imaging. For temporal monitoring of vortex dynamics, a high temporal resolution is required, since the ventricular diastole is about 0.5 s on average for a resting human heart. The quality of Doppler signals is also of utmost importance to get an accurate estimate of the blood flow velocity in the ventricle. To study this vortex, we focused on evaluating the core vorticity evaluation and especially on its evolution in time. The work is divided in three parts, and for each of them an article has been written : 1. Ultrafast Doppler sequence : The sequence is based on diverging waves, which resulted in a high frame rate. In combination with vortography, a method to locate the vortex core and derive its vorticity, the vortex dynamics could be tracked over time. This ix sequence could establish a proof of concept based on in vitro and in vivo acquisitions on healthy human volunteers. 2. Triplex sequence : Based on the ultrafast sequence, we were interested in adding information on the wall motion. The triplex sequence is able to recover not only the blood motion with a high framerate but also tissue Doppler. In the end, we could derive color, tissue, and spectral Doppler, along with a high quality Bmode by using motion compensation. The interdependence between vortex and walls dynamics could be highlighted by acquiring all the required parameters over a single cardiac cycle. 3. Automatic clutter filter : Vorticity quantification depends directly on the estimation of Doppler velocity. However, due to their low amplitude, blood signals must be filtered. Indeed, acquired signals are actually an addition of tissue and blood signals. Filtering is a critical step for an unbiased and accurate velocity estimation. The last part of this doctoral thesis has focused on the design of an efficient filter that takes advantage of the temporal and spatial dimensions of the acquisitions. Thus the tissue alongside the noise is removed. Particular care was taken to automatize the filter by applying information criteria based on information theory.

Page generated in 0.4144 seconds