Spelling suggestions: "subject:"opérateurs dde paneitz"" "subject:"opérateurs dde kneitz""
1 |
Nouveaux invariants en géométrie CR et de contact / New invariants in CR and contact geometryDietrich, Gautier 19 October 2018 (has links)
La géométrie de Cauchy-Riemann, CR en abrégé, est la géométrie naturelle des hypersurfaces réelles pseudoconvexes de $C^{n+1}$, lorsque $ngeq 1$. Nous considérons le cas générique où les variétés CR considérées sont de contact. La géométrie CR présente de nombreuses similarités avec la géométrie conforme ; les invariants mis au jour et les techniques éprouvées en géométrie conforme peuvent donc être adaptées dans ce contexte. Nous nous intéressons dans cette thèse à deux invariants de ce type. Dans une première partie, en utilisant la géométrie asymptotiquement hyperbolique complexe, nous introduisons un opérateur différentiel CR covariant agissant sur les applications allant d'une variété CR vers une variété riemannienne, égal pour les fonctions à l'opérateur de Paneitz CR. Dans une seconde partie, nous proposons un invariant de Yamabe pour les variétés de contact admettant une structure CR, et nous étudions son comportement sous somme connexe. / Cauchy-Riemann geometry, CR for short, is the natural geometry of real pseudoconvex hypersurfaces of $C^{n+1}$ for $ngeq 1$. We consider the generic case when CR manifolds are contact manifolds. CR geometry presents strong analogies with conformal geometry; hence, known invariants and techniques of conformal geometry can be transported to that context. We focus in this thesis on two such invariants. In a first part, using asymptotically complex hyperbolic geometry, we introduce a CR covariant differential operator on maps from a CR manifold to a Riemannian manifold, which coincides on functions with the CR Paneitz operator. In a second part, we propose a Yamabe invariant for contact manifolds which admit a CR structure, and we study its behaviour under connected sum.
|
2 |
Les applications conforme-harmoniquesBerard, Vincent 07 April 2010 (has links) (PDF)
Sur une surface de Riemann, l'énergie d'une application à valeurs dans une variété riemannienne est une fonctionnelle invariante conforme, ses points critiques sont les applications harmoniques. Nous proposons ici un analogue en dimension supérieure, en construisant une fonctionnelle invariante conforme pour les applications entre deux variétés riemanniennes, dont la source est de dimension $n$ paire. Ses points critiques satisfont une EDP elliptique d'ordre $n$ non linéaire qui est invariante conforme sur la source, on les appelle les applications C--harmoniques. Dans le cas des fonctions, on retrouve l'opérateur GJMS, dont le terme principal est une puissance $n/2$ du laplacien.
|
Page generated in 0.0525 seconds