• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Open Ratio of Flow Field Plates on a Micro PEM Fuel Cell Performance and Its Transient Thermal Behavior

Chu, Kuan-ming 03 January 2009 (has links)
In this study, copper metals were used to fabricate five different flow field plates with various open ratios using MEMS technology. Five samples were prepared for experiments with rib width varying as 150, 200, 300, 450, and 600 £gm at a fixed channel width (300 £gm). The open ratio of flow field plates was varied from 60.0% to 37.9%. Experiments with different operating parameters of anode/cathode pressure drop, cell operating temperature, and gas backpressure were conducted. Furthermore, a simple lumped capacitance model was used to predict the temperature evolution of the fuel cell system. Then, the optimum flow field design and cell operating parameters were finally found. Based on the aforementioned experiments an optimal open ratio ofunity was found like 49.2%. Further, an optimal open ratio in terms of the net power gain factor (= power gain/power consumption) of 38.7% can be obtained for the cases under study. Durability and reliability for copper bipolar plate were examined for long range tests (each run with at least 5 hours duration for consecutive two months). This strongly suggests that copper sheets can be considered as one of possible candidates for flow field material.
2

A Novel Design of £gPEM Fuel Cells with a Hydrogen Generator System

Chen, Zeng-yi 05 August 2010 (has links)
In the study, micro-PEM fuel cells are designed and fabricated in-house through a deep UV lithography SU-8 process and a wet etching technique for perforated holes plates (diameter is 750 £gm) of 50 £gm thickness of pure copper. Measurements of cell performance are performed using the low percentage of the weight concentration (1-10 wt. %) of NaOH solution, Al paper as the source material for hydrogen production, and different open ratios of the perforated plates to determine which best improves cell power density. Experimental results are presented in the form of polarization VI and PI curves under the above operating conditions. The experimental results show cell performance is enhanced by the self-heating, humidifying of hydrogen production, hydrogen internal circulation and accumulated pressure. Finally, the micro-PEM fuel cell system with DC/DC boost converter can generate 4.99 V for use in cellular phone accumulators charging.
3

Performance Analysis of a Micro-PEM Fuel Cell with Different Flowfields and Hydrophobic/ Hydrophilic Gas Diffusion Layers

Tsai, I-Chang 29 August 2012 (has links)
This research mainly investigated how the hydrophilic and hydrophobic properties of gas diffusion layer, and the different open ratio of the flowfield may affect the performance of the micro proton exchange membrane fuel cell (£gPEMFC). The flow plate used in this experiment was made through deep UV lithography manufacturing processes and micro-electroforming manufacturing processes. Four different open ratios, 52.8 %, 50.8 %, 75.2 % and 75.75 %, of the flowfield were designed for the flow plate composed of serpentine-parallel and serpentine geometrical micro configurations. Acrylic (PMMA: Polymethylmethacrylate) was used to make the terminal plate placed on both sides of the micro proton exchange membrane fuel cell. By varying values of the hydrophilic and hydrophobic properties of the anode gas diffusion layer, the effects of these two parameters on the polarization curve and power density of the cell were explored. All results obtained in the experiment are presented by P-I curve and V-I curve. The experiment results show that, with 1: 5 flow ratio of anode to cathode, a design with the gas diffusion layer made of the material with hydrophobic factor 20 wt.% and with open ratio of 50.8 % for anode flow channel as well as open ratio of 75.75 % for cathode flow channel may have the best performance.

Page generated in 0.0689 seconds