• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 17
  • 14
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 163
  • 59
  • 57
  • 41
  • 37
  • 32
  • 32
  • 23
  • 22
  • 17
  • 16
  • 15
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Assessments of wave-structure interactions for an oscillating wave surge converter using CFD

Tan Loh, Teng Young January 2018 (has links)
This thesis is concerned with the use of the open source computational fluid dynamics (CFD) software package, OpenFOAM® for predicting and analysing the behaviour of a near-shore oscillating wave surge converter (OWSC), when subject to various types of ocean wave conditions in a numerical wave tank (NWT). OpenFOAM® which utilises a Finite Volume Method (FVM) is used to solve the incompressible, Reynolds Averaged Navier-Stokes (RANS) equations for a two-phase fluid, based on a Volume of Fluid (VOF) phase-fraction approach to capture the interface between the air and water phases. Preliminary studies on classic wave-structure interaction benchmark cases, involving a fixed and a vertically oscillating semi-immersed horizontal cylinder are carried out. The gradual transition of the linear to non-linear behaviour of the horizontal and vertical forces induced on a fixed cylinder when subject to various regular waves, and the amplitude ratios of the surface waves elevations generated by the prescribed oscillatory motion of the cylinder, are shown to provide good overall agreement within the limitations of the relevant theory and the experimental data in the literature. The OWSC is modelled with the inclusion of a Power Take-Off (PTO) system, using a linear damping restraint, and simulated in two-dimensional (2D) and three-dimensional (3D) setups. The 2D and 3D numerical results, such as the surface wave elevations, flap angular velocity, PTO torque and flap angular displacement, compare well with one another and with the experimental data for operational regular head-on and oblique wave conditions. Small discrepancies between numerical results and experimental data are likely to be caused by non-linear behaviour of the PTO system. Pressure distributions on the flap surfaces and forces induced on the flap and hinge of the OWSC for various wave conditions are also presented. The effects between 2D and 3D wave-structure interactions become more significant when subject to large waves that break during impact. Comparison between the full scale and 1:24 scale numerical results of the OWSC shows no significant evidence of viscous and scaling effects. The validated 2D OWSC model is also subject to embedded focused waves, to predict the worse possible scenario of wave loading in extreme wave conditions. The delay of the focus event breaking is shown to affect the slamming behaviour for the larger focus event wave heights. Incorporation of a focused wave at different phase positions within a background of regular waves reveals that the focus event wave height has little effect on the peak tangential force on the flap during the slamming event, when a PTO cut-off mechanism is implemented to prevent excessive torque surges. In contrast, the peak radial force on the flap and the maximum resultant force on the hinge appear to respond more sensitively to the focus event wave height. It has been demonstrated that OpenFOAM® is able to provide a comprehensive understanding of the complex hydrodynamic analysis and prediction of highly non-linear wave-structure interactions for an OWSC, which give useful guidance and confidence to WEC developers on the design considerations relevant to the OWSC systems.
62

Development of a highly resolved 3-D computational model for applications in water quality and ecosystems

Hernandez Murcia, Oscar Eduardo 01 July 2014 (has links)
This dissertation presents the development and application of a computational model called BioChemFOAM developed using the computation fluid dynamic software OpenFOAM (Open source Field Operation And Manipulation). BioChemFOAM is a three dimensional incompressible unsteady-flow model that is coupled with a water-quality model via the Reynolds Average Navier-Stokes (RANS) equations. BioChemFOAM was developed to model nutrient dynamics in inland riverine aquatic ecosystems. BioChemFOAM solves the RANS equations for the hydrodynamics with an available library in OpenFOAM and implements a new library to include coupled systems of species transport equations with reactions. Simulation of the flow and multicomponent reactive transport are studied in detail for fundamental numerical experiments as well as for a real application in a backwater area of the Mississippi River. BioChemFOAM is a robust model that enables the flexible parameterization of processes for the nitrogen cycle. The processes studied include the following main components: algae, organic carbon, phosphorus, nitrogen, and dissolved oxygen. In particular, the research presented has three phases. The first phase involves the identification of the common processes that influence the nitrogen removal. The second phase covers the development and validation of the model that uses common parameterization to simulate the main features of an aquatic ecosystem. The main processes considered in the model and implemented in BioChemFOAM are: fully resolved hydraulic parameters (velocity and pressure), temperature variation, light's influence on the ecosystem, nutrients dynamics, algae growth and death, advection and diffusion of species, and isotropic turbulence (using a two-equation k-epsilon model). The final phase covers the application and analysis of the model and is divided in two sub stages: 1) a qualitative comparison of the main processes involved in the model (validation with the exact solution of different components of the model under different degrees of complexity) and 2) the quantification of main processes affecting nitrate removal in a backwater floodplain lake (Round Lake) in Pool 8 of the Mississippi River near La Crosse, WI. The BioChemFOAM model was able to reproduce different levels of complexity in an aquatic ecosystem and expose several main features that may help understand nutrient dynamics. The validation process with fabricated numerical experiments, discussed in Chapter 4, not only presents a detailed evaluation of the equations and processes but also introduces a step-by-step method of validating the model, given a level of complexity and parameterization when modeling nutrient dynamics in aquatic ecosystems. The study cases maintain fixed coefficients and characteristic values of the concentration in order to compare the influences that increasing or decreasing complexity has on the model, BioChemFOAM. Chapter 4, which focuses on model validation with numerical experiments, demonstrates that, with characteristic concentration and coefficients, some processes do not greatly influence the nutrient dynamics for algae. Chapters 5 and 6 discuss how BioChemFOAM was subsequently applied to an actual field case in the Mississippi River to show the model's ability to reproduce real world conditions when nitrate samples are available and other concentrations are used from typical monitored values. The model was able to reproduce the main processes affecting nutrient dynamics in the proposed scenarios and for previous studies in the literature. First, the model was adapted to simulate one species, nitrate, and its concentration was comparable to measured data. Second, the model was tested under different initial conditions. The model shows independence on initial conditions when reaching a steady mass flow rate for nitrate. Finally, a sensitivity analysis was performed using all eleven species in the model. The sensitivity takes as its basis the influence of processes on nitrate fate and transport and it defines eight scenarios. It was found in the present parameterization that green algae as modeled does not have a significant influence on improving nitrate spatial distributions and percentage of nitrate removal (PNR). On the other hand, reaction rates for denitrification at the bed and nitrification in the water shows an important influence on the nitrate spatial distribution and the PNR. One physical solution, from the broad range of scenarios defined in the sensitivity analysis, was selected as most closely reproducing the backwater natural system. The selection was based on published values of the percentage of nitrate removal (PNR), nitrate spatial concentrations, total nitrogen spatial concentrations and mass loading rate balances. The scenario identified as a physically valid solution has a reaction rate of nitrification and denitrification at the bed of 2.37x10-5 s-1. The PNR was found to be 39% when reaching a steady solution for the species transport. The denitrification at the bed process was about 6.7% of the input nitrate mass loading rate and the nitrification was about 7.7% of the input nitrate mass loading rate. The present research and model development highlight the need for additional detailed field measurements to reduce the uncertainty of common processes included in advanced models (see Chapter 2 for a review of models and Chapter 3 for the proposed model). The application presented in Chapter 6 utilizes only spatial variations of nitrate and total nitrogen to validate the model, which limits the validation of the remaining species. Despite the fact that some species are not known a priori, numerical experiments serve as a guide that helps explain how the aquatic ecosystem responds under different initial and boundary conditions. In addition, the PNR curves presented in this research were useful when defining realistic removal rates in a backwater area. BioChemFOAM's ability to formulate scenarios under different driving forces makes the model invaluable in terms of understanding the potential connections between species concentration and flow variables. In general, the case study presents trends in spatial and temporal distributions of non-sampled species that were comparable to measured data.
63

Simulation numérique instationnaire des écoulements turbulent dans les diffuseur de centrales hydrauliques en vue de l'amélioration des performances

Duprat, Cédric 09 June 2010 (has links) (PDF)
L'aspirateur d'une centrale hydraulique est le composant où l'écoulement issu de la roue est décéléré, convertissant l'excès d'énergie cinétique en pression statique. Cet écoulement en rotation est turbulent et évolue dans une géométrie tridimensionnelle complexe. Dans le cas de la réhabilitation d'une centrale existante seule la turbine et les directrices sont modifiées. Dans certains cas, l'installation d'une nouvelle roue conduit à une chute de rendement. Cet accident correspond à une variation brutale du coefficient de récupération de pression de l'aspirateur pour une très faible variation de débit au voisinage du point de rendement optimal. Le modèle d'une installation récemment réhabilitée et présentant ce phénomène, est étudié numériquement. La méthode de simulation des grandes échelles a été choisie pour simuler l'écoulement. Afin de réduire le coût du maillage, un modèle analytique de loi de paroi est développé, prenant en compte à la fois le frottement pariétal et le gradient longitudinal de pression. Une méthode est proposée pour créer un champ de vitesses turbulent à partir de champ moyen issus de mesures expérimentales. Ces méthodes sont implémentées dans le logiciel libre OpenFOAM et testées dans un premier temps sur des géométries simplifiées. Plusieurs simulations ont été réalisées sur l'aspirateur à différent point de fonctionnement de part et d'autre du point de meilleur rendement. Les résultats ainsi obtenus ont été comparés à des mesures expérimentales. Ces comparaisons ont permis de valider la méthodologie utilisée. Le phénomène de chute de rendement recherché a ainsi pu être mis en évidence et expliqué.
64

Object-oriented multi-physics applied to spatial reactor dynamics / by I.D. Clifford

Clifford, Ivor David January 2007 (has links)
Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2008.
65

Large eddy simulation analysis of non-reacting sprays inside a high-g combustor

Martinez, Jaime, master of science in engineering 04 March 2013 (has links)
Inter-turbine burners are useful devices for increasing engine power. To reduce the size of these combustion devices, ultra-compact combustor (UCC) concepts are necessary. One such UCC concept is the centrifugal-force based high-g combustor design. Here, a model ultra-compact combustor (UCC) with fuel spray injection is simulated using large eddy simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS) methodologies to understand mixing and spray dispersion inside centrifugal-based combustion systems. Both non-evaporating and evaporating droplet simulations were carried, as well as the tracking of a passive scalar, to explore this multiphase system. Simulation results show that mixing of fuel and oxidizer is based on a jet-in-crossflow system, with the fuel jet issuing into a circulating oxidizer flow stream. It is seen that a a high velocity vortex-like ring develops in the inner core of the combustor, which has enough momentum to obstruct the path of combustion products. There is minimal fuel droplet and vapor segregation inside the combustor and enhanced turbulent mixing is seen at mid-radius. / text
66

Modelling anaerobic digesters in three dimensions: integration of biochemistry with computational fluid dynamics

Gaden, David L. F. 23 August 2013 (has links)
Anaerobic digestion is a process that simultaneously treats waste and produces renewable energy in the form of biogas. Applications include swine and cattle waste management, which is still dominated by aerobic digestion, a less environmental alternative. The low adoption rates of anaerobic digestion is partly caused by the lack of modelling basis for the technology. This is due to the complexity of the process, as it involves dozens of interrelated biochemical reactions driven by hundreds of species of micro-organisms, immersed in a three-phase, non-Newtonian fluid. As a consequence, no practical computer models exist, and therefore, unlike most other engineering fields, the design process for anaerobic digesters still relies heavily on traditional methods such as trial and error. The current state-of-the-art model is Anaerobic Digestion Model No. 1 (ADM1), published by the International Water Association in 2001. ADM1 is a bulk model, therefore it does not account for the effects of concentration gradients, stagnation regions, and particle settling. To address this, this thesis works toward the creation of the first three-dimensional spatially resolved anaerobic digestion model, called Anaerobic Digestion Model with Multi-Dimensional Architecture (ADM-MDA), by developing a framework. The framework, called Coupled Reaction-Advection Flow Transient Solver (CRAFTS), is a general reaction solver for single-phase, incompressible fluid flows. It is a novel partial differential and algebraic equation (PDAE) solver that also employs a novel programmable logic controller (PLC) emulator, allowing users to define their own control logic. All aspects of the framework are verified for proper function, but still need validation against experimental results. The biochemistry from ADM1 is input into CRAFTS, resulting in a manifestation of ADM-MDA; however the numerical stiffness of ADM1 is found to conflict with the second order accuracy of CRAFTS, and the resulting model can only operate under restricted conditions. Preliminary results show spatial effects predicted by the CRAFTS model, and non-observable in the bulk model, impact the digester in a non-trivial manner and lead to measurable differences in their respective outputs. A detailed discussion of suggested work to arrive at a practical spatially resolved anaerobic digestion model is also provided.
67

Experimental and Numerical Investigation of an Electrospray RF Ion Funnel

Tridas, Eric Miguel 01 January 2012 (has links)
Using experimental techniques along with computational fluid dynamics and electrodynamic simulations the performance of the first of three focusing elements in an electrospray macromolecular patterning system was assessed. The performance of this element, the ion funnel, was analyzed by varying the parameters and electric field applied to the system including electrospray emitter to atmosphere-vacuum interface capillary distance, temperature of the desolvating heater, injection rate of solution and the voltage applied to the jet disruption element. Results indicated that processes involved in injecting larger droplets into the chamber resulted in a less effective transmission of the ions through the funnel. Droplet diameter was increased by increasing flow rate and was decreased by increasing the desolvation heater. Varying the voltage applied to the jet disrupting element indicated a peak transmission voltage, when using a 20 mil interface capillary,of 175 V and when using the 30 mil capillary of 180 V. Numerical simulations were in agreement with these values although the widths of these transmission curves were much narrower than the experimental curves.
68

Modelling anaerobic digesters in three dimensions: integration of biochemistry with computational fluid dynamics

Gaden, David L. F. 23 August 2013 (has links)
Anaerobic digestion is a process that simultaneously treats waste and produces renewable energy in the form of biogas. Applications include swine and cattle waste management, which is still dominated by aerobic digestion, a less environmental alternative. The low adoption rates of anaerobic digestion is partly caused by the lack of modelling basis for the technology. This is due to the complexity of the process, as it involves dozens of interrelated biochemical reactions driven by hundreds of species of micro-organisms, immersed in a three-phase, non-Newtonian fluid. As a consequence, no practical computer models exist, and therefore, unlike most other engineering fields, the design process for anaerobic digesters still relies heavily on traditional methods such as trial and error. The current state-of-the-art model is Anaerobic Digestion Model No. 1 (ADM1), published by the International Water Association in 2001. ADM1 is a bulk model, therefore it does not account for the effects of concentration gradients, stagnation regions, and particle settling. To address this, this thesis works toward the creation of the first three-dimensional spatially resolved anaerobic digestion model, called Anaerobic Digestion Model with Multi-Dimensional Architecture (ADM-MDA), by developing a framework. The framework, called Coupled Reaction-Advection Flow Transient Solver (CRAFTS), is a general reaction solver for single-phase, incompressible fluid flows. It is a novel partial differential and algebraic equation (PDAE) solver that also employs a novel programmable logic controller (PLC) emulator, allowing users to define their own control logic. All aspects of the framework are verified for proper function, but still need validation against experimental results. The biochemistry from ADM1 is input into CRAFTS, resulting in a manifestation of ADM-MDA; however the numerical stiffness of ADM1 is found to conflict with the second order accuracy of CRAFTS, and the resulting model can only operate under restricted conditions. Preliminary results show spatial effects predicted by the CRAFTS model, and non-observable in the bulk model, impact the digester in a non-trivial manner and lead to measurable differences in their respective outputs. A detailed discussion of suggested work to arrive at a practical spatially resolved anaerobic digestion model is also provided.
69

Object-oriented multi-physics applied to spatial reactor dynamics / Ivor David Clifford

Clifford, Ivor David January 2007 (has links)
Traditionally coupled field reactor analysis has been carried out using several loosely coupled solvers, each having been developed independently from the others. In the field of multi-physics, the current generation of object-oriented toolkits provides robust close coupling of multiple fields on a single framework. This research investigates the suitability of such frameworks, in particular the Open-source Field Operation and Manipulation (OpenFOAM) framework, for the solution of spatial reactor dynamics problems. For this a subset of the theory of the Time-dependent Neutronics and Temperatures (TINTE) code, a time-dependent two-group diffusion solver, was implemented in the OpenFOAM framework. This newly created code, called diffusionFOAM, was tested for a number of steady-state and transient cases. The solver was found to perform satisfactorily, despite a number of numerical issues. The object-oriented structure of the framework allowed for rapid and efficient development of the solver. Further investigations suggest that more advanced transport methods and higher order spatial discretization schemes can potentially be implemented using such a framework as well. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2008.
70

Object-oriented multi-physics applied to spatial reactor dynamics / Ivor David Clifford

Clifford, Ivor David January 2007 (has links)
Traditionally coupled field reactor analysis has been carried out using several loosely coupled solvers, each having been developed independently from the others. In the field of multi-physics, the current generation of object-oriented toolkits provides robust close coupling of multiple fields on a single framework. This research investigates the suitability of such frameworks, in particular the Open-source Field Operation and Manipulation (OpenFOAM) framework, for the solution of spatial reactor dynamics problems. For this a subset of the theory of the Time-dependent Neutronics and Temperatures (TINTE) code, a time-dependent two-group diffusion solver, was implemented in the OpenFOAM framework. This newly created code, called diffusionFOAM, was tested for a number of steady-state and transient cases. The solver was found to perform satisfactorily, despite a number of numerical issues. The object-oriented structure of the framework allowed for rapid and efficient development of the solver. Further investigations suggest that more advanced transport methods and higher order spatial discretization schemes can potentially be implemented using such a framework as well. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2008.

Page generated in 0.0464 seconds