Spelling suggestions: "subject:"operadores toeplitz"" "subject:"operadores teplitz""
1 |
Cálculo simbólico sobre estados coherentes generalizadosRamírez, Romina Andrea 14 February 2014 (has links)
Un concepto fundamental en el análisis funcional y sus aplicaciones en física-matemática, es la existencia de conjuntos completos de vectores ortonormales en un espacio de Hilbert. Existen también conjuntos sobrecompletos, que pierden la propiedad de ortogonalidad pero conservan la resolución de la identidad. En particular, los denominados sistemas de estados coherentes son ubicuos en Mecánica Cuántica. Los estados coherentes han sido considerados en el marco de la Mecánica Cuántica por Schrödinger y von Neumann, pero fue mucho más tarde que comenzó el desarrollo sistemático de sus definiciones y del análisis funcional sobre tales bases sobre-completas ([Berezin 1971], [Berezin 1974], [Glauber 1963]). Esta serie de trabajos dio lugar al sistema estándar de estados coherentes en el plano complejo, asociado al grupo de Heisenberg-Weyl como grupo de simetría del espacio de fases de la dinámica clásica de partículas libres. La variable compleja, como parámetro del sistema de estados coherentes, permite describir los vectores del espacio de Hilbert como funciones analíticas enteras en el espacio de Segal-Bargmann. Es precisamente la analiticidad la que permite describir operadores mediante símbolos y permite desarrollar el cálculo simbólico. Posteriores generalizaciones [Perelomov 1986] permitieron de finir y utilizar estados coherentes en variedades más elaboradas, localmente isomorfas a C<SUP>n</SUP>. Diversos conceptos de análisis funcional se generalizan casi trivialmente a estas variedades [Bates 1997, Hurt 1983, Simms 1976] siguiendo el formalismo de estados coherentes del plano. Este formidable aparato analítico inspiró la introducción de estados coherentes en la descripción de sistemas fermiónicos en Mecánica Cuántica. En este caso las variables que parametrizan el sistema de estados coherentes no son puntos en una variedad compleja sino las llamadas variables de Grassmann, elementos nilpotentes, con la propiedad de conjugación pero con un producto anticonmutativo. El eje de esta tesis es la revisión, extensión de propiedades y utilización de estados coherentes en distintos contextos de interés en Mecánica Cuántica y Análisis Funcional.
|
Page generated in 0.0533 seconds