• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 47
  • 16
  • 11
  • 9
  • 6
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 292
  • 69
  • 57
  • 37
  • 35
  • 32
  • 31
  • 31
  • 29
  • 27
  • 26
  • 26
  • 25
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Challenged Networking : An Experimental Study of new Protocols and Architectures

Nordström, Erik January 2008 (has links)
With the growth of Internet, the underlying protocols are increasingly challenged by new technologies and applications. The original Internet protocols were, however, not designed for wireless communication, mobility, long disconnection times, and varying bandwidths. In this thesis, we study challenged networking, and how well old and new protocols operate under such constraints. Our study is experimental. We build network testbeds and measure the performance of alternative protocols and architectures. We develop novel methodologies for repeatable experiments that combine emulations, simulations and real world experiments. Based on our results we suggest modifications to existing protocols, and we also develop a new network architecture that matches the constraints of a challenged network, in our case, an opportunistic network. One of our most important contributions is an Ad hoc Protocol Evaluation (APE) testbed. It has been successfully used worldwide. The key to its success is that it significantly lowers the barrier to repeatable experiments involving wireless and mobile computing devices. Using APE, we present side-by-side performance comparisons of IETF MANET routing protocols. A somewhat surprising result is that some ad hoc routing protocols perform a factor 10 worse in the testbed than predicted by a common simulation tool (ns-2). We find that this discrepancy is mainly related to the protocols’ sensing abilities, e.g., how accurately they can infer their neighborhood in a real radio environment. We propose and implement improvements to these protocols based on the results. Our novel network architecture Haggle is another important contribution. It is based on content addressing and searching. Mobile devices in opportunistic networks exchange content whenever they detect each other. We suggest that the exchange should be based on interests and searches, rather than on destination names and addresses. We argue that content binding should be done late in challenged networks, something which our search approach supports well.
92

Properties and Impact of Vicinity in Mobile Opportunistic Networks

Phe-Neau, Tiphaine 23 January 2014 (has links) (PDF)
The networking paradigm uses new information vectors consisting of human carried devices is known as disruption-tolerant networks (DTN) or opportunistic networks. We identify the binary assertion issue in DTN. We notice how most DTNs mainly analyze nodes that are in contact. So all nodes that are not in contact are in intercontact. Nevertheless, when two nodes are not in contact, this does not mean that they are topologically far away from one another. We propose a formal definition of vicinities in DTNs and study the new resulting contact/intercontact temporal characterization. Then, we examine the internal organization of vicinities using the Vicinity Motion framework. We highlight movement types such as birth, death, and sequential moves. We analyze a number of their characteristics and extract vicinity usage directions for mobile networks. Based on the vicinity motion outputs and extracted directions, we build the TiGeR that simulates how pairs of nodes interact within their vicinities. Finally, we inquire about the possibilities of vicinity movement prediction in opportunistic networks. We expose a Vicinity Motion-based heuristic for pairwise shortest distance forecasting. We use two Vicinity Motion variants called AVM and SVM to collect vicinity information. We find that both heuristics perform quite well with performances up to 99% for SVM and around 40% for AVM.
93

Development of an energy and geographic aware opportunistic network coding scheme / Mario Johann Engelbrecht

Engelbrecht, Mario Johann January 2012 (has links)
The evolution of communication networks has led us to an era where you cannot only perform surgery halfway across the world, but do so while being in the comfort of your own home. By eliminating the need for wires, wireless networks revolutionised communication networks by enabling nodes to communicate while being in a mobile state. The concept opened many doors to new applications and possibilities. Network Coding is a technique that optimises the throughput of a network by coding packets. Geo-Routing is a routing method that operates by using the geographical distances between nodes as the routing metric. Opportunistic Routing is a routing method that exploits the broadcast characteristics of wireless networks. In this thesis, we developed a routing scheme that incorporates Network Coding, Geo- Routing and energy aware conditions. It accomplishes this task by using one of the key phases constituting Opportunistic Routing. The developed routing scheme was implemented in OMNeT++. Various simulation experiments were conducted in OMNeT++ pertaining to the implemented scheme. The results indicate significant increase in performance metrics such as throughput and survivability. / Thesis (MIng (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2013
94

Development of an energy and geographic aware opportunistic network coding scheme / Mario Johann Engelbrecht

Engelbrecht, Mario Johann January 2012 (has links)
The evolution of communication networks has led us to an era where you cannot only perform surgery halfway across the world, but do so while being in the comfort of your own home. By eliminating the need for wires, wireless networks revolutionised communication networks by enabling nodes to communicate while being in a mobile state. The concept opened many doors to new applications and possibilities. Network Coding is a technique that optimises the throughput of a network by coding packets. Geo-Routing is a routing method that operates by using the geographical distances between nodes as the routing metric. Opportunistic Routing is a routing method that exploits the broadcast characteristics of wireless networks. In this thesis, we developed a routing scheme that incorporates Network Coding, Geo- Routing and energy aware conditions. It accomplishes this task by using one of the key phases constituting Opportunistic Routing. The developed routing scheme was implemented in OMNeT++. Various simulation experiments were conducted in OMNeT++ pertaining to the implemented scheme. The results indicate significant increase in performance metrics such as throughput and survivability. / Thesis (MIng (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2013
95

Improving Frequency Reuse and Cochannel Interference Coordination in 4G HetNets

Qaimkhani, Irshad Ali January 2013 (has links)
This report describes my M.A.Sc. thesis research work. The emerging 4th generation (4G) mobile systems and networks (so called 4G HetNets) are designed as multilayered cellular topology with a number of asymmetrically located, asymmetrically powered, self-organizing, and user-operated indoor small cell (e.g., pico/femto cells and WLANs) with a variety of cell architectures that are overlaid by a large cell (macro cell) with some or all interfering wireless links. These designs of 4G HetNets bring new challenges such as increased dynamics of user mobility and data traffic trespassing over the multi-layered cell boundaries. Traditional approaches of radio resource allocation and inter-cell (cochannel) interference management that are mostly centralized and static in the network core and are carried out pre-hand by the operator in 3G and lower cellular technologies, are liable to increased signaling overhead, latencies, complexities, and scalability issues and, thus, are not viable in case of 4G HetNets. In this thesis a comprehensive research study is carried out on improving the radio resource sharing and inter-cell interference management in 4G HetNets. The solution strategy exploits dynamic and adaptive channel allocation approaches such as dynamic and opportunistic spectrum access (DSA, OSA) techniques, through exploiting the spatiotemporal diversities among transmissions in orthogonal frequency division multiple access (OFDMA) based medium access in 4G HetNets. In this regards, a novel framework named as Hybrid Radio Resource Sharing (HRRS) is introduced. HRRS comprises of these two functional modules: Cognitive Radio Resource Sharing (CRRS) and Proactive Link Adaptation (PLA) scheme. A dynamic switching algorithm enables CRRS and PLA modules to adaptively invoke according to whether orthogonal channelization is to be carried out exploiting the interweave channel allocation (ICA) approach or non-orthogonal channelization is to be carried out exploiting the underlay channel allocation (UCA) approach respectively when relevant conditions regarding the traffic demand and radio resource availability are met. Benefits of CRRS scheme are identified through simulative analysis in comparison to the legacy cochannel and dedicated channel deployments of femto cells respectively. The case study and numerical analysis for PLA scheme is carried out to understand the dynamics of threshold interference ranges as function of transmit powers of MBS and FBS, relative ranges of radio entities, and QoS requirement of services with the value realization of PLA scheme.
96

Single and multiple user pair cooperation schemes with delay issues

Chen, Moyuan 31 August 2011 (has links)
Cooperative communication is a promising technique to provide spatial diversity in a virtual multi-input and multi-output (MIMO) manner. However, as application evolves toward a more practical situation, realistic constraints and issues such as channel state information (CSI) assumption must be accounted when developing appropriate cooperative schemes. In this thesis, we have addressed delay related problems in both single user pair cooperation (SUPC) and multiple user pair cooperation (MUPC) networks. In SUPC, realizing that the outdated CSI caused by delay between relay selection instant and transmission instant can impair diversity order severely, we propose an opportunistic multiple relay selection (MRS) scheme to achieve desired diversity order and combat the variation of the wireless environment. On the other hand, for multiple user pairs cooperation (MUPC), we start from one of the notable work, two hop opportunistic relaying (THOR), and analyze its the delay related problems. We propose an opportunistic pair scheduling (OPS) scheme which can get rid of the buffer requirement at the relay nodes of THOR and incurs no loss in terms of throughput scaling. Furthermore, we extend OPS to a general scheduling scheme, $L$ scheduling, which can achieve controllable throughput-and-delay trandeoffs. / Graduate
97

Reliability and Maintenance of Medical Devices

Taghipour, Sharareh 31 August 2011 (has links)
For decades, reliability engineering techniques have been successfully applied in many industries to improve the performance of equipment maintenance management. Numerous inspection and optimization models are developed and widely used to achieve maintenance excellence, i.e. the balance of performance, risk, resources and cost to reach to an optimal solution. However, the application of all these techniques and models to medical devices is new. Hospitals, due to possessing a large number of difference devices, can benefit significantly if the optimization techniques are used properly in the equipment management processes. Most research in the area of reliability engineering for medical equipment mainly considers the devices in their design or manufacturing stage and suggests some techniques to improve the reliability. To this point, best maintenance strategies for medical equipment in their operating context have not been considered. We aim to address this gap and propose methods to improve current maintenance strategies in the healthcare industry. More specifically, we first identify or propose the criteria which are important to assess the criticality of medical devices, and propose a model for the prioritization of medical equipment for maintenance decisions. The model is a novel application of multi-criteria decision making methodology to prioritize medical devices in a hospital according to their criticality. The devices with high level of criticality should be included in the hospital’s maintenance management program. Then, we propose a method to statistically analyze maintenance data for complex medical devices with censoring and missing information. We present a classification of failure types and establish policies for analyzing data at different levels of the device. Moreover, a new method for trend analysis of censored failure data is proposed. A novel feature of this work is that it considers dependent failure histories which are censored by inspection intervals. Trend analysis of this type of data has not been discussed in the literature. Finally, we introduce some assumptions based on the results of the analysis, and develop several new models to find the optimal inspection interval for a system subject to hard and soft failures. Hard failures are instantaneously revealed and fixed. Soft failures are only rectified at inspections. They do not halt the system, although they reduce its performance or productivity. The models are constructed for two main cases with the assumption of periodic inspections, and periodic and opportunistic inspections, respectively. All numerical examples and case studies presented in the dissertation are adapted from the maintenance data received from a Canadian hospital.
98

Reliability and Maintenance of Medical Devices

Taghipour, Sharareh 31 August 2011 (has links)
For decades, reliability engineering techniques have been successfully applied in many industries to improve the performance of equipment maintenance management. Numerous inspection and optimization models are developed and widely used to achieve maintenance excellence, i.e. the balance of performance, risk, resources and cost to reach to an optimal solution. However, the application of all these techniques and models to medical devices is new. Hospitals, due to possessing a large number of difference devices, can benefit significantly if the optimization techniques are used properly in the equipment management processes. Most research in the area of reliability engineering for medical equipment mainly considers the devices in their design or manufacturing stage and suggests some techniques to improve the reliability. To this point, best maintenance strategies for medical equipment in their operating context have not been considered. We aim to address this gap and propose methods to improve current maintenance strategies in the healthcare industry. More specifically, we first identify or propose the criteria which are important to assess the criticality of medical devices, and propose a model for the prioritization of medical equipment for maintenance decisions. The model is a novel application of multi-criteria decision making methodology to prioritize medical devices in a hospital according to their criticality. The devices with high level of criticality should be included in the hospital’s maintenance management program. Then, we propose a method to statistically analyze maintenance data for complex medical devices with censoring and missing information. We present a classification of failure types and establish policies for analyzing data at different levels of the device. Moreover, a new method for trend analysis of censored failure data is proposed. A novel feature of this work is that it considers dependent failure histories which are censored by inspection intervals. Trend analysis of this type of data has not been discussed in the literature. Finally, we introduce some assumptions based on the results of the analysis, and develop several new models to find the optimal inspection interval for a system subject to hard and soft failures. Hard failures are instantaneously revealed and fixed. Soft failures are only rectified at inspections. They do not halt the system, although they reduce its performance or productivity. The models are constructed for two main cases with the assumption of periodic inspections, and periodic and opportunistic inspections, respectively. All numerical examples and case studies presented in the dissertation are adapted from the maintenance data received from a Canadian hospital.
99

Pulmonary tuberculosis and Pneumocystis jiroveci pneumonia in HIV-infected patients in Ethiopia /

Aderaye, Getachew, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 5 uppsatser.
100

Pulmonary tuberculosis and HIV interaction in a setting with a high prevalence of HIV : clinical, diagnostic and epidemiological aspects /

Bruchfeld, Judith, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2002. / Härtill 4 uppsatser.

Page generated in 0.0564 seconds