• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Time division multiple access/code division multiple access for the optical local access network

Brown, Trevor Junior January 1998 (has links)
No description available.
2

TITLE: MgO doped PPLN optical wavelength converter with an integrated structure

Deng, Juan 08 1900 (has links)
This thesis describes the development of optical wavelength converters with an integrated coupling structure, fabricated on periodically poled MgO doped lithium niobate (MgO:LN) for optical fiber communication and other all-optical signal processing applications. Wavelength converter is an integral part of any broadband communication system. The ability to transfer information between carrier wavelengths allows for efficient use of the available bandwidth in a transmission medium. Wavelength converters based on PPLN waveguides are among the most efficient nonlinear optical devices available today, due to highspeed operation, low noise, parallel operation on multiple wavelength channels and preservation of information carried in the optical domain. However, low conversion efficiency is an issue for wavelength converter based on PPLN waveguide. Compared to pure LN, MgO doped LN decrease restriction in optical damage and increase conversion efficiency. Integrated coupling structure demonstrates a solution to mode-coupling of the input wave to the fundamental mode of DFG device and increase the conversion efficiency. Therefore, a periodically poled MgO doped lithium niobate (MgO:LN) waveguides with integrated coupling structure is fabricated. The components of integrated coupling structure are compatible with lithium nobate waveguides, including directional couplers, small radius bends, adiabatic taper, and mode filter. The integrated coupling structure combines the pump and signal waves into the DFG conversion section, and makes the single mode conversion of the pump from input waveguide to conversion section. Theoretical models and simulations are provided in this thesis, and performances of the device with this structure are also presented. / Thesis / Master of Applied Science (MASc)
3

Optical multiple input and multiple output (MIMO) in multimode fibre

Li, Ran January 2013 (has links)
Recently, there has been a dramatic increase in the amount of data transmission within short range local area networks (LAN). Multimode fibre (MMF) is widely used in local area networks because of its coupling and alignment along with the low cost of related components. Graded index MMF has become common due to the reduction in pulse spreading; however, as demands for high bandwidth increase towards a future gigabit rate network, the typical MMF using conventional transmission methods will not be suitable. Meanwhile, this increasing demand for high speed data transmission will soon reach the Shannon capacity limit of single mode fibres. After multiple input and multiple output (MIMO) technology was successfully used in wireless communication, the researcher realised that the same idea could also be applied to an optical fibre network. Optical MIMO techniques are gaining interest in order to create parallel channels over orthogonal modes in a MMF or a few mode fibre (FMF). This approach could lead to a significant increase in the bandwidth distance product and be employed in the next 40Gb/s or even 100Gb/s optical fibre transmission systems. Generally speaking, optical MIMO appears to be the best solution to the bandwidth limitation problem in either short distance MMF or long distance FMF systems. This thesis focuses on designing a simple, cost-effective, and energy efficient optical MIMO system based on MMFs. This proposed system can be realised by combining radial offset launching and annular multi-segment detectors. First, in the initial work, we performed a theoretical and numerical study of the key impairments of MMFs, and the mode propagation in an MMF was analysed mathematically. The variation in electrical field intensity for linearly polarised (LP) modes in the core region of an MMF and the analytical solutions for power coupling coefficients in either radial offset launching or centre launching were presented. In addition, the modal time delays, impulse response, and transfer function were all introduced. Subsequently, the near field intensity pattern (NFP) was simulated at the output facet of the MMF, which indicated that the overall NFP suffered from blurring when it contained mode mixing, and that the intensity pattern was particularly sensitive to the random phase. According to the spatial distribution of the NFP, the annular detector can be exploited more efficiently. All of the results were calculated and plotted using the MATLAB program. Secondly, the optical MIMO model in the multimode fibre was briefly summarised, including the MIMO channel matrix H expression, a mathematical expression of optical MIMO capacity, MIMO channel estimation and an equalization method. Two metrics can be used to characterise the MIMO channel performance: condition number and crosstalk at each receiver. The numerical results demonstrated that the new type of annular multi-segment detector exhibits superior performance compared to the conventional multiple single mode fibre (SMF) detectors, making them attractive for future optical MIMO systems. Finally, the core work of this thesis can be divided into two parts: the modelling of a 10Gb/s intensity modulation direct detection (IM-DD) optical MIMO MMF system; and the modelling of an advanced 10Gb/s coherent differential phase shift keying (DPSK) MIMO FMF system. In both simulation systems, the important transmission parameters of intra-group mode mixing, modal dispersion, chromatic dispersion, and mode attenuation were considered and discussed in detail. In the IM-DD optical MIMO system, the optimization of the transceiver can be based upon the laser spot size and the power flux distribution emitted by the transmitter. Results from the simulation showed that the intra-group mode mixing had a limited impact on system performance, and due to its inability to compensate for linear impairments, the IM-DD optical MIMO was not favourable for long distance transmission systems. Nevertheless, the new type of optical fibre FMF seems to be the most promising candidate for use in long haul transmission systems. Therefore, the well-known DPSK modulation format in conjugation with the coherent detection deployed in FMF was studied. Both heterodyne and intradyne detection schemes were analysed followed by mathematical derivation and numerical simulation; the results illustrated that similar system performances can be achieved in both schemes. Meanwhile, the coherent DPSK simulation results also demonstrated that the linear impairments were almost compensated by the frequency domain MIMO equalization process, which resulted in system performance being independent to transmission distance for up to 10km. This advantage proved that the coherent optical DPSK MIMO system can be employed in long haul networks. As with an IM-DD optical MIMO system, optimization of a coherent MIMO system was also possible. However, in contrast to the optimization of an IM-DD MIMO system, a trade-off had to be made between sufficient spatial diversity at the transceiver and differential modal delay caused by modal dispersion; consequently, the numerical results showed that the proposed coherent optical DPSK MIMO gained reasonable good results without using any active device, such as a spatial light modulator and a mode converter. In conclusion, this proposed optical MIMO system provided easy implementation and integration and is feasible for use in future optical communication systems.
4

Architectures and technologies for wavelength division multiplexed access networks

Nadarajah, Nishaanthan Unknown Date (has links) (PDF)
Optical fibre communication is very much preferred for the communication of signals over bandwidth of a gigabits per second over distances more than hundreds of kilometres. For a long period of time optical fibre communication has been about how to provide higher bandwidths with reduced cost per bit transmitted. However, this trend has changed from optical transmission to optical networking. By exploiting the wavelength division multiplexing (WDM) technology, optical networks have expanded from backbone networks to metropolitan and access networks to deliver high bandwidth services to the users in a seamless fashion with reduced cost. The ultimate evolution of the optical access network involves fibre-to-the-home (FTTH) technologies, which can potentially offer every kind of information and communication related services. Out of all FTTH technologies, the passive optical network (PON) can potentially offer the most cost-effective solution as the optical network is shared between a number of end users. PONs have significant advantage over competing access technologies as the fibre infrastructure can be effectively future-proofed for upgrades. A number of demonstrations have been carried out for the cost effective deployment of the PONs. However, as these networks evolve, advanced functionalities have to be added over the existing end to end transmissions between the service providers and end users.
5

QUANTUM AND CLASSICAL OPTICAL FREQUENCY COMBS FOR METROLOGY AND NETWORKING APPLICATIONS

Suparna Seshadri (19163878) 26 July 2024 (has links)
<p><br></p><p dir="ltr">Over the past decade, optical frequency combs have spurred significant advancements in both classical ultrafast optics and quantum optics. My research contributes to these two fields, catering to applications in precision metrology and optical networking. In the domain of quantum optics, the study delves into biphoton frequency combs with time-energy entanglement, employing novel electro-optic modulation schemes to enhance sensitivity and enable precise measurements of temporal correlations. Additionally, Bell states, a crucial class of entangled quantum bases, are generated in the frequency domain, showcasing their utility in delay metrology and quantum cryptographic protocols. </p><p dir="ltr">In the realm of classical optical frequency combs, this work explores dynamic steering of pulsed optical beams, holding promise for applications in imaging and remote sensing. The concept of time-efficient dynamic beam steering using a spatial array of optical frequency combs is elucidated and experimentally demonstrated through the utilization of a high-resolution spectral disperser, specifically a virtually imaged phased array (VIPA). Furthermore, integrated photonic designs featuring wavelength-selective switches and spectral dispersers are proposed to enable a versatile on-chip implementation of the beam steering approach. In sum, this research leverages the capabilities of classical and quantum optical frequency combs, with implications for emerging applications such as distributed sensing, quantum networking, and light detection and ranging (LIDAR).</p>

Page generated in 0.1301 seconds