1 |
Méthode des Eléments Finis pour les nanostructures métalliques : application au filtrage spectral dans le visible et extension au calcul modal en présence de dispersion / Finite element method for plasmonics nanostructures : application to spectral filtering in the visible range and extension to modal computation with dispersionBrûlé, Yoann 18 November 2016 (has links)
Dans ce travail de Thèse de Doctorat, dans le contexte d’une application de filtrage optique pour la réalité augmentée des Viseurs Tête Haute (VTH), plusieurs possibilités de conception de filtres basés sur des résonances de nanoparticules métalliques sont explorées. Pour ce faire, une formulation de la Méthode des Éléments Finis (FEM) précédemment développée au sein de l’Institut Fresnel est appliquée à différentes structures électromagnétiques complexes. La validité des résultats de la FEM est alors vérifiée, dans une configuration extrêmement résonante d’un réseau bidimensionnel de nanocônes d’or illuminé dans des conditions d’absorption totale de la lumière incidente, par comparaison avec les résultats d’une autre méthode numérique complètement indépendante. Une fois validée dans cette configuration extrême, cette méthode a pu être utilisée afin de conduire une étude paramétrique sur deux types particuliers de réseaux de nanoparticules métalliques. Les résultats de cette étude paramétrique ont conduit aux designs de deux types de composant de filtrage de la lumière visible requis pour l’application VTH: celui de réseaux monodimensionnels de rubans d’argent permettant de réfléchir une partie du spectre lumineux pour une composante de polarisation de la lumière tout en étant globalement transparent pour l’autre composante de polarisation, et celui de réseaux bidimensionnels de nanocylindres à section elliptique permettant de réfléchir deux parties distinctes du spectre en fonction de la polarisation de la lumière incidente et ceci toujours avec des propriétés de transparence globale. Dans un dernier temps, une nouvelle formulation de la FEM est développée afin d’étendre cette méthode numérique au calcul des modes de résonance de ce type de nanostructures métalliques. En présence de structures incorporant des matériaux métalliques, dispersifs et dissipatifs, l’opérateur de Maxwell associé est non-linéaire en fréquence et non-Hermitien et donc difficile à aborder numériquement. Dans le but de linéariser cet opérateur vis-à-vis de la fréquence, le formalisme dit de “champs auxiliaires” a été implémenté numériquement aux éléments finis. La validité des résultats numériques obtenus est enfin vérifiée sur une cavité fermée puis sur différents cristaux photoniques bidimensionnels constitués de tiges métalliques de Drude. Enfin, dans le cas de structures ouvertes, une couche parfaitement adaptée (PML) dispersive est étudiée dans le cadre des problèmes modaux. / In this PhD, in the frame of a filtering application for augmented reality of Head-Up Display (HUD), several possibilities to design filters based on metallic nanoparticles resonances are explored. To do so, a Finite Element Method formulation previously developed within the Institut Fresnel is initially recalled and its implementation applied to various complex electromagnetic structures. The validity of its results is verified, in the particuliar case of an extremely resonant configuration consisting in a gold nanocones metallic grating illuminated in the condition of total absorption of light, by comparison with the results of another completely independent numerical method. Thus, the results of this implementation having been validated in this extreme configuration, they could then be used to conduct a parametric study on two particular types of metallic nanoparticles gratings significantly less resonant. The results of this parametric study have led to the design of both types of filtering component of the visible light required for the HUD application: the mono-dimensional silver ribbons gratings allowing to reflect a part of the visible spectrum for one polarization’s component of the light while being globally transparent for the other component, and that of two-dimensional silver nanocylinders of elliptic cross section allowing to reflect two distinct parts of the spectrum according to the polarization of incident light while still being globally transparent. In a last time, a new FEM formulation is developed in order to extend this numerical method to the resonances computation of this kind of metallic nanostructures. When metallic materials are involved into electromagnetic structures, the associated Maxwell operator is non-linear and non-Hermitian. The Eigenvalue problem to solve is practically impossible to implement into the FEM. In order to linearize the Maxwell operator toward the frequency, a formalism called “Auxiliary fields formalism” is introduced and implemented numerically. The validity of the results obtained through this implementation is then verified on a closed cavity and on several example of bi-dimensional photonic crystals made of Drude metallic rods. Finally, when tackling open structures, a dispersive perfectly matched layer (PML) is studied in the frame of eigenvalue problems.
|
2 |
ACTIVE OPTIMAL CONTROL STRATEGIES FOR INCREASING THE EFFICIENCY OF PHOTOVOLTAIC CELLSAljoaba, Sharif 01 January 2013 (has links)
Energy consumption has increased drastically during the last century. Currently, the worldwide energy consumption is about 17.4 TW and is predicted to reach 25 TW by 2035. Solar energy has emerged as one of the potential renewable energy sources. Since its first physical recognition in 1887 by Adams and Day till nowadays, research in solar energy is continuously developing. This has lead to many achievements and milestones that introduced it as one of the most reliable and sustainable energy sources. Recently, the International Energy Agency declared that solar energy is predicted to be one of the major electricity production energy sources by 2035.
Enhancing the efficiency and lifecycle of photovoltaic (PV) modules leads to significant cost reduction. Reducing the temperature of the PV module improves its efficiency and enhances its lifecycle. To better understand the PV module performance, it is important to study the interaction between the output power and the temperature. A model that is capable of predicting the PV module temperature and its effects on the output power considering the individual contribution of the solar spectrum wavelengths significantly advances the PV module designs toward higher efficiency.
In this work, a thermoelectrical model is developed to predict the effects of the solar spectrum wavelengths on the PV module performance. The model is characterized and validated under real meteorological conditions where experimental temperature and output power of the PV module measurements are shown to agree with the predicted results.
The model is used to validate the concept of active optical filtering. Since this model is wavelength-based, it is used to design an active optical filter for PV applications. Applying this filter to the PV module is expected to increase the output power of the module by filtering the spectrum wavelengths. The active filter performance is optimized, where different cutoff wavelengths are used to maximize the module output power. It is predicted that if the optimized active optical filter is applied to the PV module, the module efficiency is predicted to increase by about 1%. Different technologies are considered for physical implementation of the active optical filter.
|
3 |
Fibre Bragg Grating Components for Filtering, Switching and LasingYu, Zhangwei January 2008 (has links)
Fibre Bragg gratings (FBGs) are key components for a vast number of applications in optical communication systems, microwave photonics systems, and optical sensors, etc. The main topic of this thesis is fibre Bragg grating fabrication and applications in direct microwave optical filtering, high speed switching and switchable dual-wavelength fibre lasers. First, a brief overview is given about the photosensitivity in optical fibre, basic FBG fabrication techniques, the popular coupled-mode theory for describing fundamental characteristics of FBGs and the Transfer Matrix method for the numerical simulations of complex-structured FBGs. An advanced FBG fabrication system based on the technique of multiple printing in fibre (with a continuous-wave source) has been used to write complex FBGs incorporating phase shifts, apodization and chirp. A single double-peaked superimposed grating working in reflection can be employed as a direct optical filter for millimetre-wave signals. Bit error rate measurements confirmed that the filter exhibited nearly on-off behaviour in the passband with a 3-dB bandwidth of 2 GHz for a central frequency of 20 GHz, as expected from the optical spectrum reflection. The presented technique can be used in radio-over-fibre systems or simultaneous up-conversion of ultra-wide band signals and filtering. This thesis focused mostly on the research of two 4-cm long Hamming-apodized gratings written in side-hole fibres with internal electrodes. The temperature dependence measurements showed that the birefringence of the component increased with the temperature. Dynamic measurement has shown nanosecond full off-on and on-off switching. During the electrical pulse action, the grating wavelength was blue-shifted for the x-polarization and red-shifted for the y-polarization due to the mechanical stress. Both peaks subsequently experienced a red-shift due to the relaxation of mechanical stress and the increasing core temperature transferred from the metal in many microseconds. All the wavelength shifts of the two polarizations depend quadratically on the electrical pulse voltage and linearly on the pulse duration. Numerical simulations gave accurate description of the experimental results and were useful to understand the physics behind the birefringence switching. Finally, two switchable dual-wavelength erbium-doped fibre lasers based on FBG feedback were proposed. In one method, an overlapping cavity for the two lasing wavelengths and hybrid gain medium in the fibre laser were introduced. Dual-wavelength switching was achieved by controlling the Raman pump power. The other method employed an injection technique and the dual-wavelength switching was controlled by the power of the injection laser. The switching time was measured to be ~50 ms. Detailed characteristics of the dual-wavelength switching in the two fibre lasers were experimentally studied and corresponding principles were physically explained. / QC 20100922
|
Page generated in 0.1082 seconds