Spelling suggestions: "subject:"optical spectrometer""
1 |
Optical spectroscopy of organic thin films at the air-water interfaceDe Bry Beth Ann 08 1900 (has links)
No description available.
|
2 |
Optical microsystems in silicon based on a Fabry-Perot resonance cavity application for spectral analysis of visible light /Correia, José Higino Gomes, January 1900 (has links)
Thesis (Doctoral)--Technische Universiteit Delft, 1999. / Includes bibliographical references.
|
3 |
Optical microsystems in silicon based on a Fabry-Perot resonance cavity application for spectral analysis of visible light /Correia, José Higino Gomes, January 1900 (has links)
Thesis (Doctoral)--Technische Universiteit Delft, 1999. / Includes bibliographical references.
|
4 |
ANALYTICAL SPECTROSCOPIC CAPABILITIES OF OPTICAL IMAGING CHARGE TRANSFER DEVICES.BILHORN, ROBERT BYERS. January 1987 (has links)
The investigations described within this dissertation foretell the imminent revolution in optical analytical spectroscopy and conclusively demonstrate superior qualitative and quantitative analysis performance of a new system for atomic spectroscopy as compared to present, state-of-the-art instrumentation. The advent of a new class of multichannel detectors, the silicon charge transfer devices (CTDs) is shown to significantly impact ultraviolet, visible, and near-infrared analytical spectroscopy. An overview of the operation, characteristics, and performance of CTDs is presented including the results of the characteristics of a CTD detector system developed during these investigations. Theoretical comparisons of the performance obtainable in spectroscopic systems employing CTD detectors versus conventional detectors, including equations identifying the factors limiting sensitivity, demonstrate that CTDs offer superior performance. The second part of this dissertation describes the application of a particular CTD, the charge injection device (CID), to a very challenging spectroscopic problem, as far as light detection is concerned, simultaneous multielement analytical atomic emission spectroscopy. This widely employed technique for qualitative and quantitative elemental analysis requires sensitive and wide dynamic range detection of a large number of spectral resolution elements. This research resulted in the development of a novel echelle spectrometer employing a CID detector which has been demonstrated to be capable of solving many of the problems currently encountered in analytical atomic spectroscopy. The system achieves superior sample throughput rates, flexibility, accuracy and precision as compared to sequential spectrometers employing a single detector and to polychromators employing relatively few fixed detectors. The research included the development of a unique method of operating the CID, which is used to cope with the very wide dynamic range signals encountered in atomic spectroscopy, and has resulted in a spectroscopic instrument able to qualify simultaneously major and trace components of extremely complex samples with greater sensitivity and accuracy than possible with conventional instrumentation. New, very flexible, and extremely rapid methods of qualitative analysis have also been developed which virtually eliminate the possibility of spectral line misassignment. The atomic emission spectroscopic system is applicable in a variety of analytical areas as diversified as high sensitivity detection of near infrared spectral lines and element-specific detection of chromatographic eluents.
|
5 |
Generation of tunable femtosecond laser pulses and the construction of an ultrafast pump-probe spectrometerMorrison, Vance. January 2008 (has links)
An ultrafast UV-visible spectrometer was designed and implemented. An optical parametric amplifier was constructed to be used as a pump source for the spectrometer. Using nonlinear optical processes and an 800 nm ultrashort pulses, tunable infrared(IR) light was produced with a wavelength range of ∼.1 mum to 3 mum. The IR light was then mixed with 800 nm light to produce tunable visible light with a wavelength range of 466 nm to 600 nm. Supercontinuum (SC) was used as the probe pulse of the spectrometer, providing a large observation bandwidth. Commercially purchased fast spectrometers were used as the detection mechanism. The characterization of the set up, as well the observation of some ultrafast molecular dynamics observed in 8-hydroxy-1,3,6-pyrenetrisulfonic acid, are presented.
|
6 |
Dissolucão eletrolítica de ligas de alumínio em cavacos e determinação dos elementos constituintes por espectrometria de emissão atômica com fonte de plasma (ICP-OES)GRIGOLETTO, TANIA 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:54:14Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:09:24Z (GMT). No. of bitstreams: 1
12433.pdf: 20959730 bytes, checksum: a98e9829a642f5e597da179c95c176ef (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Quimica, Universidade de Sao Paulo - IQ/USP
|
7 |
Dissolucão eletrolítica de ligas de alumínio em cavacos e determinação dos elementos constituintes por espectrometria de emissão atômica com fonte de plasma (ICP-OES)GRIGOLETTO, TANIA 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:54:14Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:09:24Z (GMT). No. of bitstreams: 1
12433.pdf: 20959730 bytes, checksum: a98e9829a642f5e597da179c95c176ef (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Quimica, Universidade de Sao Paulo - IQ/USP
|
8 |
Generation of tunable femtosecond laser pulses and the construction of an ultrafast pump-probe spectrometerMorrison, Vance. January 2008 (has links)
No description available.
|
9 |
Optical transmission properties of dielectric aperture arrays. / CUHK electronic theses & dissertations collectionJanuary 2010 (has links)
Optical detection devices such as optical biosensors and optical spectrometers are widely used in many applications for the functions of measurements, inspections and analysis. Due to the large dimension of prisms and gratings, the traditional optical devices normally occupy a large space with complicated components. Since cheaper and smaller optical devices are always in demand, miniaturization has been kept going for years. Thanks to recent fabrication advances, nanophotonic devices such as semiconductor laser chips have been growing in number and diversity. However, the optical biosensor chips and the optical spectrometer chips are seldom reported in the literature. For the reason of improving system integration, the study of ultra-compact, low-cost, high-performance and easy-alignment optical biosensors and optical spectrometers are imperative. This thesis is an endeavor in these two subjects and will present our research work on studying the optical transmission properties of dielectric aperture arrays and developing new optical biosensors and optical spectrometers. / Subsequently, optical transmission properties through a self-mixing interferometer array are studied and a novel high-resolution cost-effective optical spectrometer is proposed. The miniature interferometer-based spectrometer is made of polymethyl methacrylate (PMMA) with a CCD as the detector. The detected intensity of each CCD pixels contains the spectral information. Since each frequency component in the incoming beam corresponds to a unique phase difference of the two beam portions of each optical interferometer, the total intensity received by each CCD pixel, which is resulted from the addition of the interference signals from all the frequency components in the beam, should also be unique. Therefore, the spectrum calculation is a problem to solve an ill-posed linear system by using Tikhonov regularization method. Simulation results show that the resolution can reach picometer level. Apart from the choice of path difference between the interfering beams, the spectral resolution also depends on the signal-to-noise ratio and analogue-digital conversion resolution (dynamic range) of the CCD chip. In addition, the theory of uniform waveguide scattering is explored to expand the possibility of using such mini-interferometers for performing free-space spectral analysis of waveguide devices. At the same time, the method of least squares is used to correct the pixel non-uniformity of the CCD so as to improve the performance of the spectrometer. / The first half of the thesis demonstrates that the optical phase shift associated with the surface plasmon (SP) assisted extraordinary optical transmission (EOT) in nano-hole arrays fabricated in a metal film has a strong dependence on the material refractive index value in close proximity to the holes. A novel refractive index sensor based on detecting the EOT phase shift is proposed by building a model. This device readily provides a 2-D biosensor array platform for non-labeled real-time detection of a variety of organic and biological molecules in a sensor chip format, which leads to a high packing density, minimal analyte volumes, and a large number of parallel channels while facilitating high resolution imaging and supporting a large space-bandwidth product (SBP). Simulation (FDTD Solutions, Lumerical Solutions Inc) results indicate an achievable sensitivity limit of 4.37x10-9 refractive index units (RIU) and a dynamic range as large as 0.17 RIU. / The sensor chip and spectrometer chip introduced here are based on the interference of light transmitted through dielectric aperture arrays. Their compact feature renders these devices ideal for miniaturization and integration as the systems in microfluidics architectures and lab-on-chip designs. / Yang, Tao. / Adviser: H. P. Ho. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 150-163). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
10 |
Optical microscanners and microspectrometers using thermal bimorph actuators /Lammel, Gerhard. Schweizer, Sandra. Renaud, Philippe, January 1900 (has links)
"Based on research results of Sandra Schweizer and Gerhard Lammel during their PhD thesis' at the Swiss Federal Institute of Technology Lausanne in the group of Prof. Philippe Renaud"--Pref. / Includes bibliographical references and index.
|
Page generated in 0.1058 seconds