• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational Intelligent Sensor-rank Consolidation Approach for Industrial Internet of Things (IIoT)

Mekala, M. S., Rizwan, Patan, Khan, Mohammad S. 01 January 2021 (has links)
Continues field monitoring and searching sensor data remains an imminent element emphasizes the influence of the Internet of Things (IoT). Most of the existing systems are concede spatial coordinates or semantic keywords to retrieve the entail data, which are not comprehensive constraints because of sensor cohesion, unique localization haphazardness. To address this issue, we propose deep learning inspired sensor-rank consolidation (DLi-SRC) system that enables 3-set of algorithms. First, sensor cohesion algorithm based on Lyapunov approach to accelerate sensor stability. Second, sensor unique localization algorithm based on rank-inferior measurement index to avoid redundancy data and data loss. Third, a heuristic directive algorithm to improve entail data search efficiency, which returns appropriate ranked sensor results as per searching specifications. We examined thorough simulations to describe the DLi-SRC effectiveness. The outcomes reveal that our approach has significant performance gain, such as search efficiency, service quality, sensor existence rate enhancement by 91%, and sensor energy gain by 49% than benchmark standard approaches.

Page generated in 0.1119 seconds