• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 36
  • 8
  • 4
  • 1
  • Tagged with
  • 140
  • 140
  • 140
  • 61
  • 56
  • 55
  • 38
  • 29
  • 29
  • 25
  • 25
  • 23
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Fluxo de potência ótimo com restrições de estabilidade / Stability constrained Optimal Power Flow

Moreno Alamo, Ana Cecilia 06 July 2015 (has links)
Neste trabalho, as restrições de estabilidade transitória são incorporadas ao problema de Fluxo de Potência Ótimo (FPO) por meio da aproximação de equações diferenciais do problema de estabilidade por um conjunto de equações algébricas provenientes de procedimentos de integração numérica. Uma contribuição original desta dissertação é a proposição de um procedimento de otimização multi-passos que minimiza problemas de convergência e acelera o processo computacional. O procedimento de otimização proposto foi testado com sucesso num sistema pequeno de 3 geradores, tendo as potências geradas como variáveis de controle. / In this work, transient stability constraints are incorporated into the Optimal Power Flow (OPF) problem by approximating differential equations constraints by a set of equivalent algebraic equations originated from numerical integration procedures. A contribution of this dissertation is the proposal of a multi-step optimization procedure, which minimizes convergence problems and speeds up computation. The proposed optimization procedure was successfully tested on a small 3-machine power system, having the generated powers as control variables.
42

Método da função Lagrangiana aumentada-barreira logarítmica para a solução do problema de fluxo de potência ótimo / Method of logarithmic barrier-augmented Lagrangian function for solution of the optimal power flow problem

Baptista, Edméa Cássia 07 June 2001 (has links)
Neste trabalho propomos uma abordagem para a resolução do problema de fluxo de potência ótimo. Para isso, foram obtidos dados teóricos, a partir de um levantamento bibliográfico, que explicitaram os métodos de penalidade, de barreira, de Newton-Lagrangiano, da função Lagrangiana aumentada e dual-Lagrangiano. Nesta abordagem, as restrições de igualdade são tratadas pelo método de Newton, as restrições canalizadas, de tensão e tap, pelo método da função barreira logarítmica, e as restrições de desigualdade e demais restrições canalizadas, pelo método da função Lagrangiana aumentada. A motivação para este estudo foi a necessidade de manter as variáveis - tensão e tap - dentro de seus limites. Os resultados numéricos apresentados evidenciam o potencial desta metodologia para a resolução de problemas de programação não-linear e, em particular, do problema de fluxo de potência ótimo. / A new approach to solving the optimal power flow problem is proposed in this study. The first step in developing this method was to obtain theoretical material from bibliographic survey, which described in detail the penalty method, the barrier method, Newton\'s method, the augmented Lagrangian method end the dual-Lagrangian method. In the new approach, equality constraints are handled by Newton\'s method, the voltage end tap box inequality constraints by the logarithmic barrier method and the inequality constraints and the other box inequality constraints by the augmented Lagrangian method. The motivation for this research was the necessity to keep the voltage and tap variables within their limits. The numerical results demonstrate the potential of this methodology for the solution of nonlinear problems and, in particular, of the optimal power flow problem.
43

Sequential Quadratic Programming-Based Contingency Constrained Optimal Power Flow

Pajic, Slobodan 30 April 2003 (has links)
The focus of this thesis is formulation and development of a mathematical framework for the solution of the contingency constrained optimal power flow (OPF) based on sequential quadratic programming. The contingency constrained optimal power flow minimizes the total cost of a base case operating state as well as the expected cost of recovery from contingencies such as line or generation outages. The sequential quadratic programming (SCP) OPF formulation has been expanded in order to recognize contingency conditions and the problem is solved as a single entity by an efficient interior point method. The new formulation takes into account the system corrective capabilities in response to contingencies introduced through ramp-rate constraints. Contingency constrained OPF is a very challenging problem, because each contingency considered introduces a new problem as large as the base case problem. By proper system reduction and benefits of constraint relaxation (active set) methods, in which transmission constraints are not introduced until they are violated, the size of the system can be reduced significantly Therefore, restricting our attention to the active set constraint set makes this large problem significantly smaller and computationally feasible.
44

Fluxo de potência ótimo com restrições de estabilidade / Stability constrained Optimal Power Flow

Ana Cecilia Moreno Alamo 06 July 2015 (has links)
Neste trabalho, as restrições de estabilidade transitória são incorporadas ao problema de Fluxo de Potência Ótimo (FPO) por meio da aproximação de equações diferenciais do problema de estabilidade por um conjunto de equações algébricas provenientes de procedimentos de integração numérica. Uma contribuição original desta dissertação é a proposição de um procedimento de otimização multi-passos que minimiza problemas de convergência e acelera o processo computacional. O procedimento de otimização proposto foi testado com sucesso num sistema pequeno de 3 geradores, tendo as potências geradas como variáveis de controle. / In this work, transient stability constraints are incorporated into the Optimal Power Flow (OPF) problem by approximating differential equations constraints by a set of equivalent algebraic equations originated from numerical integration procedures. A contribution of this dissertation is the proposal of a multi-step optimization procedure, which minimizes convergence problems and speeds up computation. The proposed optimization procedure was successfully tested on a small 3-machine power system, having the generated powers as control variables.
45

Optimal Operation of Battery Energy Storage Systems in Radial Distribution Networks

Behnood, Aref January 2019 (has links)
In recent years, power systems are facing with various challenges arising from the increased share of renewable energy systems. Among all sections of power systems, distribution grids are affected the most since the majority of renewable energy sources are connected to distribution grids. As the penetration of Variable Energy Sources increases in electric grids, energy storage systems have become more influential. In this context, this thesis presents a new algorithm for the optimal operation of Battery Energy Storage Systems in distribution grids. The proposed algorithm aims to define the optimal operation of Battery Energy Storage Systems considering the network topology, the output power of Variable Energy Sources and the electricity prices from the one-day ahead electric market as well as real time control of the batteries through smart appliances. In order to do this, firstly a comprehensive study on the existing Optimal Power Flow methods is carried out. Then, AR-OPF which is a novel Optimal Power Flow method for radial distribution systems is presented and the required mathematical constraints, equations and parameters of Battery Energy Storage Systems for modelling in distribution systems are described. Then, the problem formulation and the proposed algorithm are discussed in detail. Further to energy storage as the main function of Battery Energy Storage Systems, the impact of the proposed method on other functions of Battery Energy Storage Systems such as voltage control, grid support and loss reduction will be investigated. In order to do so, the proposed algorithm is applied to the IEEE 34 node test system as a case study. This will be carried out through defining several different scenarios. Finally, a sensitivity analysis is performed on the size of the existing batteries and the electricity price. The thesis will be concluded by the findings and possible future works.
46

Accuracies of Optimal Transmission Switching Heuristics Based on Exact and Approximate Power Flow Equations

Soroush, Milad 22 May 2013 (has links)
Optimal transmission switching (OTS) enables us to remove selected transmission lines from service as a cost reduction method. A mixed integer programming (MIP) model has been proposed to solve the OTS problem based on the direct current optimal power flow (DCOPF) approximation. Previous studies indicated computational issues regarding the OTS problem and the need for a more accurate model. In order to resolve computational issues, especially in large real systems, the MIP model has been followed by some heuristics to find good, near optimal, solutions in a reasonable time. The line removal recommendations based on DCOPF approximations may result in poor choices to remove from service. We assess the quality of line removal recommendations that rely on DCOPF-based heuristics, by estimating actual cost reduction with the exact alternating current optimal power flow (ACOPF) model, using the IEEE 118-bus test system. We also define an ACOPF-based line-ranking procedure and compare the quality of its recommendations to those of a previously published DCOPF-based procedure. For the 118-bus system, the DCOPF-based line ranking produces poor quality results, especially when demand and congestion are very high, while the ACOPF-based heuristic produces very good quality recommendations for line removals, at the expense of much longer computation times. There is a need for approximations to the ACOPF that are accurate enough to produce good results for OTS heuristics, but fast enough for practical use for OTS decisions.
47

Assessment of Applying SSSC to Power Market for Carbon Trading

Wu, Meng-Che 26 June 2011 (has links)
In recent year, the awareness of environmental protection has made the power dispatch problem not necessarily economy-oriented. This thesis proposed the application of Particle Swarm Optimization (PSO) algorithm to solve the Unit Commitment (UC) problem for 24 hours with maximum profit in the power and carbon market. Optimal Power Flow (OPF) is used to solve the UC problem for the interconnected power network that is comprised of three independent areas to optimize the dispatching strategy. The UC problem must satisfy the constraints of the load demand, generating limits, minimum up/down time, ramp rate limits, and also the limits of power flow, buses voltage and transmission line capacity. The other objective of this thesis is to employ the Static Synchronous Series Compensator (SSSC) to integrate with OPF based on Equivalent Current Injection (ECI) power flow model, and install it at interconnected lines between each independent area controlling the power flow to reduce emission. In order to avoid the local optimality problem, this thesis proposed the utilization of the Multiple Particle Swarm Optimization (MPSO), which can quickly reach the optimal solution with a better performance and accuracy. The Independent Power Producer (IPP) can get the maximum profit with installed SSSC from the power and carbon trading with the calculation of power wheeling expense and carbon forecasting data. Furthermore, it can also assess the need of participating in the trading market or not.
48

Small Area Power Plant Optimal Planning with Distributed Generations and Green House Gas Reduction

Lin, Chang-ming 27 June 2011 (has links)
In recent years, with the energy shortage, the use of renewable energy is inevitable. With CO2 the most important greenhouse gas causing global warming as well as the increase of population, renewable energy is one way to save energy and reduce carbon emissions. The traditional capacity investment for serving the load in distribution systems usually considered the addition of new substations or expansion of the existing substation and associated new feeder requirement. Nowadays, there are a lots of distributed generations (DG¡¦s) to be chosen. Factors of the choice taken into account will include lower pollution, higher efficiency, higher return rate for construction of distributed power generation systems. This thesis assumes that the distributed generation can be invested for long-term power plant planning. The planning of DG would be investigated from the perspectives of the independent investors. The modified Particle Swarm Optimization is proposed to determine the optimal sizing and sit of DG¡¦s addition in distribution systems with the constrains of CO2 limitation and addition of distributed generation to maximize profits. This thesis deals with discrete programming problem of optimal power flow, which includes continuous and discrete types of variables. The continuous variables are the generating unit real power output and the bus voltage magnitudes, the discrete variables are the shunt capacitor banks and sit problems. The Miaoli-Houlong system of Taiwan power will be used in this thesis for the verification of the feasibility of the proposed method.
49

Application of Optimal Power Flow for Power System Restoration

Huang, Cong-Hui 10 June 2008 (has links)
With the deregulation of power industry and the market competition, low cost, reliable power supply, and secured system operations are major concerns of the advanced deregulation markets. Power system protection is important for service reliability and quality assurance. To reduce the outage duration and promptly restore power services, fault section estimate has to be done effectively and accurately with fault alarms. First, an operational strategy for secondary power system restoration using Modified Grey Relational Analysis (MGRA) is proposed. The Restoration Scheme (RS) can be divided into three steps involving fault section determination, recovering process, and voltage correction process. Three GRAs are incorporated to design the overall restoration scheme. The first GRA uses network switching status to identify the fault. The second GRA combines switching states and load levels for network recovery. The third GRA uses capacitor bank control to support bus voltages. For security operation of restoration scheme, an Equivalent Current Injection (ECI) based hybrid current-power Optimal Power Flow (OPF) model with Predictor-Corrector Interior Point Algorithm (PCIPA) is used to verify the proposed scheme by off-line analysis to confirm a secure overall network operation including load-power balance, power generation limits, voltage limits, and power flow limits. The proposed method can further decompose into two sub-problems. Computer simulations were conducted with an IEEE 30-bus power system to show the effectiveness of the proposed restoration scheme and the PCIPA technique is very accurate, robust, and efficient for the modified OPF solution.
50

Method to Detect and Measure Potential Market Power Caused by Transmission Network Congestions on Electricity Markets

Elfstadius, Martin, Gecer, Daniel January 2008 (has links)
<p>This thesis is based on studies of the deregulated electricity markets located in the United States of America. The problem statement of the thesis evolved continuously throughout our initial period of research. Focus was finally put on monitoring and detection of potential market power caused by congestion in the transmission network. The existence of market power is a serious concern in today’s electric energy markets. A system that monitors the trading is needed and much research and many proposals on how to deal with this problem have been introduced over the years. We focus on some of these approaches and develop an approach of our own, which we call “Monopolistic Energy Calculation”. We adopt the idea to identify participants with the ability to raise prices without losing market share. An ability that should not be present on a competitive market. We take this idea further by identifying participants with the ability to make considerable price raises without losing all market shares. We propose a way to calculate the remaining market shares (Monopolistic Energy Levels) after a large price raise. These calculated levels of energy, that are only deliverable by a certain participant or by a certain group of participants, are caused by the active congestions in the network.</p><p>The approach detects the amounts of these energy levels and the location in the network at which they are present. This is a prospective method if used with a prediction of the following day’s demand, which is regularly available with high accuracy. The method can also be used for monitoring purposes to identify critical situations in real-time. The method is implemented and two sets of simulations are done in which we explain and evaluate the approach. The results are promising and the correlation between “Monopolistic Energy” and market power is confirmed.</p> / <p>Detta examensarbete är baserat på studier av de deregulerade electricitsmarknaderna i USA. Problemformuleringen var i början av detta arbete inte definitiv, utan utvecklades under en längre inledande fas av forskningsarbete. Slutligen kunde vi faställa att detektion av potentiell marknadskraft på elektricitetsmarknaden, orsakat av överbelastningar i transmissionnätverket, var av särskilt intresse. Ett system som övervakar handeln och förekomster av orättvisor orsakat av detta är nödvändigt. Det har de senaste åren gjorts mycket forskning inom detta område. Baserat på denna forskning utvecklades sedan ett eget förslag, som vi kallar ”Monopolistic Energy Calculations”. Vissa tidigare förslag på hur problemet kan angripas blev av särskilt intresse. En idé från dessa var att identifiera marknadsaktörer med förmågan att höja priser utan att förlora marknadsandelar, en icke önskvärd egenskap hos aktörer då en konkurrenskraftig marknad är eftertraktad.</p><p>Vi tar denna idé ett steg längre genom att identifiera marknadsaktörer med förmågan att höja priser signifikant utan att förlora alla marknadsandelar. Vi föreslår ett sätt att beräkna dessa energinivåer som endast är möjliga att levereras av en eller ett fåtal särskilda aktörer, som direkt följd av de aktiva stockningarna i nätverket, under antagandet av en inelastisk efterfrågan. Vi föreslår ett sätt att beräkna de återstående marknadsandelarna (Monopolistic Energy Levels) efter en stor prishöjning. Vår metod beräknar mängden av denna energi och var i nätverket dessa mängder förekommer. Denna metod kan sia om framtida problem om en estimering av morgondagens efterfråga används. Sådana estimeringar görs idag</p><p>regelbundet med hög träffsäkerhet. Metoden kan även användas i realtid för upptäckt av kritiska marknadssituationer. Simuleringar av detta görs som förklarar vår lösning och utvärderar den. Resultaten är lovande och korrelationen mellan ”Monopolistisk Energi” och marknadskraft är bekräftade.</p>

Page generated in 0.0871 seconds