1 |
Análise quantitativa do sinal da deglutição / Quantitative analysis of the swallowing signalAndré Augusto Spadotto 07 July 2009 (has links)
Neste trabalho, buscou-se compreender a morfologia e os componentes do sinal da deglutição. Na busca desse entendimento diversas técnicas foram empregadas. No intuito de fazer marcações fidedignas em trechos específicos do sinal, o qual foi analisado simultaneamente com a imagem da videofluoroscopia da deglutição, considerado o melhor método atual na avaliação da dinâmica da deglutição. Os parâmetros numéricos utilizados para análise também foram abrangentes e com base em técnicas atuais de processamento de sinais, como emprego de transformada Wavelet. Quanto à classificação dos sinais, foram utilizados classificadores modernos como floresta de caminhos ótimos, máquinas de vetores de suporte, redes neurais artificiais e classificador Bayesiano, dando maior ênfase ao primeiro, por possuir um custo computacional bem menor quando comparado aos outros 3, e consequentemente convergindo mais rapidamente ao resultado. Foram avaliados 84 sinais, divididos em 2 grupos separados pela consistência do bolo alimentar oferecido (líquido e pastoso). Na distinção e/ou caracterização desses tipos foi definido um subconjunto com 4 variáveis que proporcionou uma boa acurácia na separação das classes representantes de cada tipo de bolo alimentar. / This work proposes to understand the morphology and the components of the swallowing signal. In pursuit of this understanding, a variety of techniques were employed. In order to make reliable markings on specific portions of the signal, the signal was examined simultaneously with videofluoroscopic swallowing, which is considered the best method in the evaluation of swallowing dynamics. The parameters used for numerical analysis were based on current signal processing techniques, such as: Wavelet transform, Optimum path forest, Support vector machines, Artificial neural networks and Bayesian classifier, emphasizing the first technique, due to a much lower computational cost when compared to the previous, and, consequently, the results converged much faster. Eighty four signals, divided into 2 groups separated by the consistency of food bolus offered (liquid and thickened), were evaluated. For distinction and/or characterization of such types, a subset with 4 variables was defined, providing a good accuracy in the separation of these classes representing each type of consistency of the food bolus.
|
2 |
Análise quantitativa do sinal da deglutição / Quantitative analysis of the swallowing signalSpadotto, André Augusto 07 July 2009 (has links)
Neste trabalho, buscou-se compreender a morfologia e os componentes do sinal da deglutição. Na busca desse entendimento diversas técnicas foram empregadas. No intuito de fazer marcações fidedignas em trechos específicos do sinal, o qual foi analisado simultaneamente com a imagem da videofluoroscopia da deglutição, considerado o melhor método atual na avaliação da dinâmica da deglutição. Os parâmetros numéricos utilizados para análise também foram abrangentes e com base em técnicas atuais de processamento de sinais, como emprego de transformada Wavelet. Quanto à classificação dos sinais, foram utilizados classificadores modernos como floresta de caminhos ótimos, máquinas de vetores de suporte, redes neurais artificiais e classificador Bayesiano, dando maior ênfase ao primeiro, por possuir um custo computacional bem menor quando comparado aos outros 3, e consequentemente convergindo mais rapidamente ao resultado. Foram avaliados 84 sinais, divididos em 2 grupos separados pela consistência do bolo alimentar oferecido (líquido e pastoso). Na distinção e/ou caracterização desses tipos foi definido um subconjunto com 4 variáveis que proporcionou uma boa acurácia na separação das classes representantes de cada tipo de bolo alimentar. / This work proposes to understand the morphology and the components of the swallowing signal. In pursuit of this understanding, a variety of techniques were employed. In order to make reliable markings on specific portions of the signal, the signal was examined simultaneously with videofluoroscopic swallowing, which is considered the best method in the evaluation of swallowing dynamics. The parameters used for numerical analysis were based on current signal processing techniques, such as: Wavelet transform, Optimum path forest, Support vector machines, Artificial neural networks and Bayesian classifier, emphasizing the first technique, due to a much lower computational cost when compared to the previous, and, consequently, the results converged much faster. Eighty four signals, divided into 2 groups separated by the consistency of food bolus offered (liquid and thickened), were evaluated. For distinction and/or characterization of such types, a subset with 4 variables was defined, providing a good accuracy in the separation of these classes representing each type of consistency of the food bolus.
|
3 |
Processamento e análise de vídeos utilizando Floresta de Caminhos Ótimos / Processing and video analysis through Optimum-Path ForestMartins, Guilherme Brandão [UNESP] 20 May 2016 (has links)
Submitted by GUILHERME BRANDÃO MARTINS null (guilherme-bm@outlook.com) on 2016-06-09T18:22:45Z
No. of bitstreams: 1
Dissertacao_Guilherme_Brandão_Martins.pdf: 11362535 bytes, checksum: c1da2ab3e80ead0846eae49d9a1bc40e (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-06-13T17:06:19Z (GMT) No. of bitstreams: 1
martins_gb_me_sjrp.pdf: 11362535 bytes, checksum: c1da2ab3e80ead0846eae49d9a1bc40e (MD5) / Made available in DSpace on 2016-06-13T17:06:19Z (GMT). No. of bitstreams: 1
martins_gb_me_sjrp.pdf: 11362535 bytes, checksum: c1da2ab3e80ead0846eae49d9a1bc40e (MD5)
Previous issue date: 2016-05-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Com os avanços relacionados às tecnologias de redes computacionais e armazenamento de dados observa-se que, atualmente, uma grande quantidade de conteúdo digital está sendo disponibilizada via internet, em especial por meio de redes sociais. A fim de explorar esse contexto, abordagens relacionadas ao processamento e apredizado de padrões em vídeos têm recebido crescente atenção nos últimos anos. Sistemas de recomendação de filmes, amplamente empregados em lojas virtuais, são umas das principais aplicações no que se refere aos avanços de pesquisa na área de processamento de vídeos. Com o objetivo de acelerar o processo de recomendação e redução de armazenamento, técnicas para classificação e sumarização de vídeos por meio de aprendizado de máquina têm sido utilizadas com o intuito de explorar conteúdo informativo e também redundante. Por meio de técnicas de agrupamento e descrição de dados, é possível identificar quadros-chave de um conjunto de amostras a fim de que, posteriormente, estes sejam usados para sumarização do vídeo. Além disso, por meio de bases de vídeos rotuladas, podemos classificar amostras de
modo a organizá-las por gêneros de vídeo. O presente trabalho objetiva utilizar o classificador Floresta de Caminhos Ótimos para sumarização automática
e classificação de vídeos por gênero, bem como o estudo de sua viabilidade nestes contextos. Os resultados obtidos mostram que o referido classificador obteve desempenhos bastante promissores e próximos à algumas das técnicas de sumarização automática e classificação de vídeos que, atualmente, representam o estado-da-arte no atual contexto. / Currently, a number of improvements related to computational networks and
data storage technologies have allowed a considerable amount of digital content to be provided on the internet, mainly through social networks. In order to exploit this context, video processing and pattern recognition approaches have received a considerable attention in the last years. Movie recommendation systems are widely employed in virtual stores, thus being one of the main applications regarding to research advances in the video processing field. Aiming to boost the content recommendation and storage cutback, different video categorization and video summarization techniques have been applied to handle with more informative and redundant content. By availing clustering and data description techniques, it is possible to identify keyframes from a given sample collection in order to consider them as part of the video summarization process. Furthermore, through labeled video data collections it is possible to classify samples in order to arrange them by video genres. The main goal of this work is to employ the Optimum-Path Forest classifier in both video summarization and video genre classification processes as well as to conduct a viability study of such classifier in the aforementioned contexts. The results have shown this classifier can achieve promising performances, being very close in terms of summary quality and consistent recognition rates to some state-of-the-art video summarization and classification approaches.
|
4 |
Análise de padrões na produção de cana de açúcar utilizando aprendizado de máquina /Hespanhol, Patrícia Freitas Pelozo January 2019 (has links)
Orientador: Luís Roberto Almeida Gabriel Filho / Coorientador: Luiz Fernando Sommaggio Coletta / Coorientador: Camila Pires Cremasco Gabriel / Resumo: O presente trabalho buscou identificar padrões na produção de cana de por meio da utilização de Inteligência Artificial. Para tanto, foi realizada coleta de informações de fontes secundárias, com dados estatísticos fornecidos por órgãos públicos sobre a área cultivada e a produção de cana de açúcar, índices como pluviométricos e de temperatura e o tipo de solo dos municípios do estado de São Paulo, no ano de 2017, por meio de pesquisa documental. Com a utilização dos métodos Floresta dos Caminhos Ótimos (OPF), K-means e Fuzzy C-means (FCM) buscou-se identificar clusters, ou padrões, que representem essas características produtivas. Além disso, o trabalho testou a utilização do algoritmo OPF como ferramenta de apoio à decisão no setor agroindustrial e fez a comparação do método com os agrupadores de padrões K-means e FCM. Após o processamento dos dados foi possível identificar padrões na produção de cana de açúcar pelos três algoritmos, sendo que o OPF proporcionou resultados muito parecidos com o K-means e FCM, confirmando a eficiência do método. Além disso, foi possível identificar, no ano de 2017, um padrão de produção com municípios com alta produtividade, grandes áreas destinadas a produção de cana de açúcar e produção da cultura, com temperatura média alta e índices pluviométricos baixos. Os municípios que possuem pequenas áreas com plantação de cana de açúcar possuem uma variabilidade muito grande em resultados de produtividade. O padrão de município com baixa produtivi... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The present work sought to identify patterns in sugarcane production through the use of Artificial Intelligence. For this purpose, information was collected from secondary sources, with statistical data provided by public agencies on cultivated area and sugarcane production, rainfall and temperature indices, and the soil type of the municipalities of the State of São Paulo, in the year 2017, through documentary research. Using Optimum-Path Forest (OPF), K-means and Fuzzy C-means (FCM) methods, the aim was to identify clusters, or patterns, that represent these productive characteristics. In addition, the work tested the use of OPF algorithm as a decision support tool in the agribusiness sector and compared the method with the K-means and FCM standards groupers. After data processing, it was possible to identify patterns in sugarcane production by the three algorithms, and OPF provided results very similar to K-means and FCM, confirming the efficiency of the method. In addition, it was possible to identify, in the year 2017, a production pattern of municipalities with high productivity, large areas destined to the production of sugar cane and crop production, with high average temperature and low rainfall. Municipalities that have small areas with sugar cane plantation have a very large variability in productivity results. The municipal pattern with low productivity is accompanied by very low average temperature, very high rainfall rates and soils of the type Cambisols, Neosols and Spodosols. The soil type pattern that provided the highest productivity for the municipalities was the Oxisol. / Mestre
|
5 |
Classificação de conteúdo malicioso baseado em Floresta de Caminhos Ótimos / Malicious content classification based on Optimum-path ForestFernandes, Dheny [UNESP] 19 May 2016 (has links)
Submitted by DHENY FERNANDES null (dfernandes@fc.unesp.br) on 2016-06-15T17:19:42Z
No. of bitstreams: 1
Dissertação.pdf: 1456402 bytes, checksum: 56f028f949d37b33c377e1c247b0fd43 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-06-21T17:18:53Z (GMT) No. of bitstreams: 1
fernandes_d_me_bauru.pdf: 1456402 bytes, checksum: 56f028f949d37b33c377e1c247b0fd43 (MD5) / Made available in DSpace on 2016-06-21T17:18:53Z (GMT). No. of bitstreams: 1
fernandes_d_me_bauru.pdf: 1456402 bytes, checksum: 56f028f949d37b33c377e1c247b0fd43 (MD5)
Previous issue date: 2016-05-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O advento da Internet trouxe amplos benefícios nas áreas de comunicação, entretenimento, compras, relações sociais, entre outras. Entretanto, várias ameaças começaram a surgir nesse cenário, levando pesquisadores a criar ferramentas para lidar com elas. Spam, malwares, con- teúdos maliciosos, pishing, fraudes e falsas URLs são exemplos de ameaças. Em contrapartida, sistemas antivírus, firewalls e sistemas de detecção e prevenção de intrusão são exemplos de ferramentas de combate às tais ameaças. Principalmente a partir de 2010, encabeçado pelo malware Stuxnet, as ameaças tornaram-se muito mais complexas e persistentes, fazendo com que as ferramentas até então utilizadas se tornassem obsoletas. O motivo é que tais ferra- mentas, baseadas em assinaturas e anomalias, não conseguem acompanhar tanto a velocidade de desenvolvimento das ameaças quanto sua complexidade. Desde então, pesquisadores têm voltado suas atenções a métodos mais eficazes para se combater ciberameaças. Nesse contexto, algoritmos de aprendizagem de máquina estão sendo explorados na busca por soluções que analisem em tempo real ameaças provenientes da internet. Assim sendo, este trabalho tem como objetivo analisar o desempenho dos classificadores baseados em Floresta de Caminhos Ótimos, do inglês Optimum-path Forest (OPF), comparando-os com os demais classificadores do estado-da-arte. Para tanto, serão analisados dois métodos de extração de características: um baseado em tokens e o outro baseado em Ngrams, sendo N igual a 3. De maneira geral, o OPF mais se destacou no não bloqueio de mensagens legítimas e no tempo de treinamento. Em algumas bases a quantidade de spam corretamente classificada também foi alta. A versão do OPF que utiliza grafo completo foi melhor, apesar de que em alguns casos a versão com grafo knn se sobressaiu. Devido às exigências atuais em questões de segurança, o OPF, pelo seu rápido tempo de treinamento, pode ser melhorado em sua eficácia visando uma aplicação real. Em relação aos métodos de extração de características, 3gram foi superior, melhorando os resultados obtidos pelo OPF. / The advent of Internet has brought widespread benefits in the areas of communication, entertainment, shopping, social relations, among others. However, several threats began to emerge in this scenario, leading researchers to create tools to deal with them. Spam, malware, malicious content, phishing, fraud and false URLs are some examples of these threats. In contrast, anti-virus systems, firewalls and intrusion detection and prevention systems are examples of tools to combat such threats. Especially since 2010, headed by the Stuxnet malware, threats have become more complex and persistent, making the tools previously used became obsolete. The reason is that such tools based on signatures and anomalies can not follow both the speed of development of the threats and their complexity. Since then, researchers have turned their attention to more effective methods to combat cyber threats. In this context, machine learning algorithms are being exploited in the search for solutions to analyze real-time threats from the internet. Therefore, this study aims to analyze the performance of classifiers based on Optimum-path Forest, OPF, comparing them with the other state-of-the-art classifiers. To do so, two features extraction methods will be analyzed: one based on tokens and other based on Ngrams, considering N equal 3. Overall, OPF stood out in not blocking legitimate messages and training time. In some bases the amount of spam classified correctly was high as well. The version that uses complete graph was better, although in some cases the version that makes use of knn graph outperformed it. Due to the current demands on security issues, OPF, considering its fast training time, can be improved in its effectiveness aiming at a real application. In relation to feature extraction methods, 3gram was better, improving OPF’s results.
|
6 |
Open-set optimum-path forest classifier = Classificador optimum-path forest para cenário aberto / Classificador optimum-path forest para cenário abertoMendes Júnior, Pedro Ribeiro, 1990- 25 August 2018 (has links)
Orientadores: Anderson de Rezende Rocha, Ricardo da Silva Torres / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-25T19:52:29Z (GMT). No. of bitstreams: 1
MendesJunior_PedroRibeiro_M.pdf: 10648148 bytes, checksum: 314a33c9bb6fb8a188bfa762899107e8 (MD5)
Previous issue date: 2014 / Resumo: Em reconhecimento de padrões, um cenário aberto é aquele em que não há amostras de treinamento para algumas classes que podem aparecer durante o teste. Normalmente, muitas aplicações são inerentemente de cenário aberto. Consequentemente, as soluções bem sucedidas da literatura para cenário fechado nem sempre são adequadas para problemas de reconhecimento na prática. Nesse trabalho, propomos um novo classificador multiclasse para cenário aberto, que estende o classificador Optimum-Path Forest (OPF). O OPF é um classificador de padrões baseado em grafos, simples, independente de parâmetros, multiclasse e desenvolvido para para problemas de cenário fechado. O método que propomos, o Open-Set OPF (OSOPF), incorpora a capacidade de reconhecer as amostras pertencentes às classes que são desconhecidas no tempo de treinamento, sendo adequado para reconhecimento em cenário aberto. Além disso, propomos novas medidas para avaliação de classificadores propostos para problemas em cenário aberto. Nos experimentos, consideramos seis grandes bases de dados com diferentes cenários de reconhecimento e demonstramos que o OSOPF proposto supera significativamente as abordagens existentes na literatura / Abstract: An open-set recognition scenario is the one in which there are no a priori training samples for some classes that might appear during testing. Usually, many applications are inherently open set. Consequently, the successful closed-set solutions in the literature are not always suitable for real-world recognition problems. Here, we propose a novel multiclass open-set classifier that extends upon the Optimum-Path Forest (OPF) classifier. OPF is a graph-based, simple, parameter independent, multiclass, and widely used classifier for closed-set problems. Our proposed Open-Set OPF (OSOPF) method incorporates the ability to recognize samples belonging to classes that are unknown at training time, being suitable for open-set recognition. In addition, we propose new evaluation measures for assessing the effectiveness performance of classifiers in open-set problems. In experiments, we consider six large datasets with different open-set recognition scenarios and demonstrate that the proposed OSOPF significantly outperforms its counterparts of the literature / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
|
7 |
Caracterização de perdas comerciais em sistemas de energia através de técnicas inteligentes. / Characterization of commercial losses in power systems through intelligent techniques.Ramos, Caio César Oba 11 September 2014 (has links)
A detecção de furtos e fraudes nos sistemas de energia provocados por consumidores irregulares é o principal alvo em análises de perdas não-técnicas ou comerciais pelas empresas de energia. Embora a identificação automática de perdas nãotécnicas tenha sido amplamente estudada, a tarefa de selecionar as características mais representativas em um grande conjunto de dados a fim de aumentar a taxa de acerto da identificação, bem como para caracterizar possíveis consumidores irregulares como um problema de otimização, não tem sido muito explorada neste contexto. Neste trabalho, visa-se o desenvolvimento de algoritmos híbridos baseados em técnicas evolutivas a fim de realizar a seleção de características no âmbito da caracterização de perdas não-técnicas, comparando as suas taxas de acerto e verificando as características selecionadas. Vários classificadores são comparados, com destaque para a técnica Floresta de Caminhos Ótimos por sua robustez, sendo ela a técnica escolhida para o cálculo da função objetivo das técnicas evolutivas, analisando o desempenho das mesmas. Os resultados demonstraram que a seleção de características mais representativas podem melhorar a taxa de acerto da classificação de possíveis perdas não-técnicas quando comparada à classificação sem o processo de seleção de características em conjuntos de dados compostos por perfis de consumidores industriais e comerciais. Isto significa que existem características que não são pertinentes e podem diminuir a taxa de acerto durante a classificação dos consumidores. Através da metodologia proposta com o processo de seleção de características, é possível caracterizar e identificar os perfis de consumidores com mais precisão, afim de minimizar os custos com tais perdas, contribuindo para a recuperação de receita das companhias de energia elétrica. / The detection of thefts and frauds in power systems caused by irregular consumers is the most actively pursued analysis in non-technical losses by electric power companies. Although non-technical losses automatic identification has been massively studied, the task of selecting the most representative features in a large dataset, in order to boost the identification accuracy, as well as characterizing possible irregular consumers as a problem of optimization, has not been widely explored in this context. This work aims at developing hybrid algorithms based on evolutionary algorithms in order to perform feature selection in the context of non-technical losses characterization. Although several classifiers have been compared, we have highlighted the Optimum-Path Forest (OPF) technique mainly because of its robustness. Thus, the OPF classifier was chosen to compute the objective function of evolutionary techniques, analyzing their performances. This procedure with feature selection is compared with the procedure without feature selection in datasets composed by industrial and commercial consumers profiles. The results demonstrated that selecting the most representative features can improve the classification accuracy of possible non-technical losses. This means that there are irrelevant features and they can reduce the classification accuracy of consumers. Considering the methodology proposed with feature selection procedure, it is possible to characterize and identify consumer profiles more accurately, in order to minimize costs with such losses, contributing to the recovery of revenue from electric power companies.
|
8 |
Caracterização de perdas comerciais em sistemas de energia através de técnicas inteligentes. / Characterization of commercial losses in power systems through intelligent techniques.Caio César Oba Ramos 11 September 2014 (has links)
A detecção de furtos e fraudes nos sistemas de energia provocados por consumidores irregulares é o principal alvo em análises de perdas não-técnicas ou comerciais pelas empresas de energia. Embora a identificação automática de perdas nãotécnicas tenha sido amplamente estudada, a tarefa de selecionar as características mais representativas em um grande conjunto de dados a fim de aumentar a taxa de acerto da identificação, bem como para caracterizar possíveis consumidores irregulares como um problema de otimização, não tem sido muito explorada neste contexto. Neste trabalho, visa-se o desenvolvimento de algoritmos híbridos baseados em técnicas evolutivas a fim de realizar a seleção de características no âmbito da caracterização de perdas não-técnicas, comparando as suas taxas de acerto e verificando as características selecionadas. Vários classificadores são comparados, com destaque para a técnica Floresta de Caminhos Ótimos por sua robustez, sendo ela a técnica escolhida para o cálculo da função objetivo das técnicas evolutivas, analisando o desempenho das mesmas. Os resultados demonstraram que a seleção de características mais representativas podem melhorar a taxa de acerto da classificação de possíveis perdas não-técnicas quando comparada à classificação sem o processo de seleção de características em conjuntos de dados compostos por perfis de consumidores industriais e comerciais. Isto significa que existem características que não são pertinentes e podem diminuir a taxa de acerto durante a classificação dos consumidores. Através da metodologia proposta com o processo de seleção de características, é possível caracterizar e identificar os perfis de consumidores com mais precisão, afim de minimizar os custos com tais perdas, contribuindo para a recuperação de receita das companhias de energia elétrica. / The detection of thefts and frauds in power systems caused by irregular consumers is the most actively pursued analysis in non-technical losses by electric power companies. Although non-technical losses automatic identification has been massively studied, the task of selecting the most representative features in a large dataset, in order to boost the identification accuracy, as well as characterizing possible irregular consumers as a problem of optimization, has not been widely explored in this context. This work aims at developing hybrid algorithms based on evolutionary algorithms in order to perform feature selection in the context of non-technical losses characterization. Although several classifiers have been compared, we have highlighted the Optimum-Path Forest (OPF) technique mainly because of its robustness. Thus, the OPF classifier was chosen to compute the objective function of evolutionary techniques, analyzing their performances. This procedure with feature selection is compared with the procedure without feature selection in datasets composed by industrial and commercial consumers profiles. The results demonstrated that selecting the most representative features can improve the classification accuracy of possible non-technical losses. This means that there are irrelevant features and they can reduce the classification accuracy of consumers. Considering the methodology proposed with feature selection procedure, it is possible to characterize and identify consumer profiles more accurately, in order to minimize costs with such losses, contributing to the recovery of revenue from electric power companies.
|
9 |
Reconhecimento de produtos por imagem utilizando palavras visuais e redes neurais convolucionais / Image recognition of products using bag of visual words and convolutional neural networksJuraszek, Guilherme Defreitas 15 December 2014 (has links)
Made available in DSpace on 2016-12-12T20:22:53Z (GMT). No. of bitstreams: 1
Guilherme Defreitas Juraszek.pdf: 7449714 bytes, checksum: 9caf50824709b584d611d1086803286b (MD5)
Previous issue date: 2014-12-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The popularization of electronic devices like cameras and smartphones resulted in an increasing volume of images and videos available on the internet. This scenario allowed researchers to explore new search and retrieval techniques to use, not only the wide available text, but also extract information directly from images and videos. In this work three image recognition techniques have been compared, the Bag of Features or Bag of Visual Words (BOVW) using artificial descriptors, Convolutional Neural Networks (CNN) and CNN as a natural descriptor where the descriptors are obtained from a large pre-trained CNN in a different dataset. The techniques are applied in the image recognition problem using image analysis. Those techniques can be applied in products
search applications using smartphones, smart glasses, products recognition in videos and others. The BOVW technique is demonstrated using the artificial descriptors SIFT, SURF and MSER, with dense and interest points based extraction. The algorithms KMeans and unsupervised Optimum-Path Forest (OPF-U) are used for clustering and supervised Optimum-Path Forest (OPF-S) and Support Vector Machines (SVM) are used for classification. The second technique uses a convolutional neural network (CNN) with three convolutional layers. The third technique uses the Overfeat, a large pre-trained CNN in the ImageNet dataset, for extraction of a characteristic vector of the new image dataset. This characteristic vector act as a natural descriptor and is then classified using OPF-S and SVM. The accuracy, total time of processing, time for clustering (KMeans and OPF-U), time for classification (OPF-S and SVM) are evaluated in the Caltech 101 dataset and in a dataset created by the author with images of products (Recog- Prod). It is evaluated how image size, category size and overall parameters affect the accuracy of the studied techniques. The results showed that the CNN (Overfeat), pre-trained in a different large dataset, used for extraction of the natural descriptor of the new dataset and trained with SVM achieved the best accuracy with 0.855 in the Caltech 101 dataset and 0.905 in the authors dataset. The CNN created and trained entirely by the author showed the second best result with the accuracy of 0.710, using the RGB color space in the authors dataset and 0.540 using the YUV color space in the Caltech 101 dataset. Both CNN, using RGB and YUV, showed similar accuracies but the CNN using YUV images took significant less time to be trained. The BOVW technique resulted in a accuracy lower than the preview techniques in both tested datasets. In the experiments using the author s dataset with different category sizes (5, 10, 15, 36) the CNN as a natural descriptor resulted in the best accuracy among the other tested techniques. The CNN as a natural descriptor is also the most robust, since as the number of the categories is increased, and resulted in a lower accuracy decay among the others. In the experiments with a dataset with 5 categories the CNN
as natural descriptor was able to recognize all the images correctly. / A popularização de equipamentos como câmeras e celulares equipados com câmeras resultou em um grande volume de informações no formato de imagens e vídeos disponibilizadas na internet. O crescimento no volume de informação digital disponível nestes formatos demanda a criação de novas soluções de buscas baseadas não apenas em texto, mas capazes de extraírem informações relevantes diretamente desses formatos de mídia. Neste trabalho são comparadas as técnicas de reconhecimento utilizando palavras visuais por meio de descritores artificiais Bag of Visual Words ou Bag of Features (BOVW), reconhecimento utilizando redes neurais convolucionais (CNN) e reconhecimento usando descritores naturais obtidos através de uma rede neural convolucional previamente treinada em uma base distinta. As técnicas são aplicadas no problema de reconhecimento de produtos a partir da análise de imagens. Tais técnicas podem ser aplicadas em uma ampla gama de sistemas como reconhecimento de produtos utilizando dispositivos móveis, obtenção de informações de produtos visualizados utilizando um óculos de realidade aumentada, reconhecimento de produtos em vídeos, entre outros. A técnica BOVW é demonstrada com base nos descritores artificiais SIFT, SURF e MSER com extração de características densa e por meio de pontos de interesse. São estudados os algoritmos KMeans e Floresta de Caminhos Ótimos não Supervisionada (OPFU) na etapa de agrupamento e Máquinas de Vetor de Suporte (SVM) e Floresta de Caminhos Ótimos Supervisionada (OPF-S) na etapa de classificação. A segunda técnica utiliza uma rede neural convolucional (CNN) de três camadas. Na terceira técnica é utilizada uma CNN, previamente treinada na base de imagens ImageNet, de cinco camadas convolucionais. A CNN previamente treinada é utilizada para a extração de um vetor de características do novo conjunto de imagens a ser analisado. Este vetor atua como um descritor natural e é classificado utilizando SVM e OPF-S. São avaliadas a acurácia, tempo de processamento total, tempo de processamento para agrupamento (KMeans e OPF-U), tempo de processamento para classificação das técnicas nas bases de imagens Caltech 101 e em uma base de imagens de produtos criada pelo autor (RecogProd). São avaliados ainda como o tamanho da imagens, quantidade de categorias e escolha dos parâmetros influenciam na acurácia do resultado. Os resultados mostram que a utilização de uma CNN (Overfeat), previamente treinada em uma grande base de imagens, como um descritor natural para extração de um vetor de características e treinamento de um classificador SVM, apresentou a melhor acurácia com 0,855 na base Caltech101 e 0,905 na base criada, RecogProd, em uma escala de 0 a 1. A CNN criada e treinada pelo autor apresentou o segundo melhor resultado com 0,710 utilizando o espaço de cores RGB na RecogProd e 0,540 utilizando o espaço de cores YUV na base Caltech101. A CNN treinada com imagens utilizando os espaço de cores RGB e YUV apresentaram acurácias muito próximas em ambas as bases de treinamento porém, o treinamento utilizando YUV foi muito mais rápido. A técnica BOVW apresentou uma acurácia inferior à CNN como descritor natural e a CNN em ambas as bases testadas. Nos experimentos, com diversos tamanhos de categorias (5, 10, 15 e 36) da RecogProd, a CNN como descritor natural apresentou novamente a melhor acurácia. Os resultados mostram ainda que, conforme o número de categorias é aumentado, a CNN como descritor natural apresentou uma queda menor na acurácia em relação às demais técnicas avaliadas. Foi observado ainda que em uma base com 5 categorias a CNN como descritor natural alcançou a acurácia de 1,0, sendo capaz de classificar todos os exemplos corretamente.
|
10 |
Estudo comparativo de técnicas para segmentação e classificação de imagens de lesões de pele / Comparative study of techniques for segmentation and classification of skin lesions imagesSantos, Fernando Pereira dos [UNESP] 16 June 2016 (has links)
Submitted by FERNANDO PEREIRA DOS SANTOS null (fernando_persan@hotmail.com) on 2016-06-30T21:35:05Z
No. of bitstreams: 1
EstudoComparativo_FernandoPereiraSantos.pdf: 17823712 bytes, checksum: fd7d1643bbacb3313ced8e742fda123f (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-07-04T12:57:57Z (GMT) No. of bitstreams: 1
santos_fp_me_sjrp.pdf: 17823712 bytes, checksum: fd7d1643bbacb3313ced8e742fda123f (MD5) / Made available in DSpace on 2016-07-04T12:57:57Z (GMT). No. of bitstreams: 1
santos_fp_me_sjrp.pdf: 17823712 bytes, checksum: fd7d1643bbacb3313ced8e742fda123f (MD5)
Previous issue date: 2016-06-16 / Neste trabalho é apresentada uma nova metodologia para a análise e classificação de lesões de pele. O modelo proposto foi dividido em quatro etapas que compreende o pré-processamento das imagens, a segmentação do objeto desejado, a extração de características e a classificação das lesões. Na etapa de pré-processamento, aplica-se o modelo de cor RGB, a quantização de cores e o filtro de difusão anisotrópica. Na segmentação, a imagem suavizada é submetida à operação de fechamento da morfologia matemática, estimativa de peso nos arcos do grafo e à transformada imagem-floresta com apenas duas sementes. A extração de características foi baseada na aplicação da regra ABCD. Na assimetria foi aplicado o conceito de razão de perpendiculares sobre a maior diagonal obtida e, para a borda, o produto vetorial e o ponto de inflexão foram implementados para fornecer o porcentual de curvatura do contorno. Para a cor, valores de média, variância, desvio padrão, homogeneidade e contraste foram calculados. Para a estrutura diferencial foi desenvolvido a dimensão fractal e a energia. Na última etapa, classificação, a floresta de caminhos ótimos foi utilizada. Os resultados da classificação são apresentados por malignidade, quando todos os tipos de lesões estão juntos, e por categorias, quando os tipos de lesão são agrupados dois a dois. Para obter o modelo proposto foram efetuados diversos testes com modelos de cor diferentes, forma de aplicação da quantização, diferenciação no cálculo da quantidade de iterações do filtro de difusão anisotrópica e possibilidade de não aplicar a morfologia matemática. / In this paper a new methodology for the analysis and classification of skin lesions is presented. The suggested model is divided into four steps which comprise the pre processing of images, segmentation of the desired object, feature extraction and lesions classification. In the pre processing step, it is applied the RGB color model, color quantization and anisotropic diffusion filter. In segmentation, the smoothed image is submitted to the closing operation of mathematical morphology, arc-weight estimation in the graph and the image-foresting transform with only two seeds. The feature extraction is based on the application of ABCD rule. In asymmetry was applied the perpendicular ratio concept on the greater diagonal obtained and, to the border, the vector product and the inflection point were implemented to provide the contour curvature percentage. For color, average values, variance, standard deviation, homogeneity and contrast were calculated. For differential structure was developed fractal dimension and energy. In the last stage, classification, optimum-path forest was used. The classification results are presented by malignancy, when all types of lesions are together, and by categories, when the types of lesions are grouped two by two. For the model were performed several tests with different color models, the form of application the quantization, differentiation in the calculation of the quantity of filter iterations of anisotropic diffusion and the possibility of not applying the mathematical morphology.
|
Page generated in 0.0774 seconds