• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bi2O3およびその固溶体における酸化物イオン伝導 / Oxide ionic conduction in Bi2O3 and its solid solutions

設樂, 一希 23 March 2015 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第18983号 / 工博第4025号 / 新制||工||1620 / 31934 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 宇田 哲也, 教授 白井 泰治 / 学位規則第4条第1項該当
2

Bi2O3およびその固溶体における酸化物イオン伝導 / Oxide ionic conduction in Bi2O3 and its solid solutions

Shitara, Kazuki 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18983号 / 工博第4025号 / 新制||工||1620(附属図書館) / 31934 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 宇田 哲也, 教授 白井 泰治 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
3

Dynamical Systems in Cell Division Cycle, Winnerless Competition Models, and Tensor Approximations

Gong, Xue 08 July 2016 (has links)
No description available.
4

Non-equilibrium Phase Transitions and Steady States in Biased Diffusion of Two Species

Korniss, György 21 April 1997 (has links)
We investigate the dynamics of a three-state stochastic lattice gas, consisting of holes and two oppositely "charged" species of particles, under the influence of an "electric" field, at zero total charge. Interacting only through an excluded volume constraint, particles can hop to nearest neighbor empty sites, but particle-particle exchange between oppositely charged particles is also allowed on a separate time scale. Controlled by this relative time scale, particle density and drive, the system orders into a charge-segregated state. Using a combination of Monte Carlo simulations and continuum field theory techniques, we study the order of these transitions and map out the steady state phase diagram of the system. On a single sheet of transitions, a line of multicritical points is found, separating the first order and continuous transitions. Furthermore, we study the steady-state structure factors in the disordered phase where homogeneous configurations are stable against small harmonic perturbations. The average structure factors show a discontinuity singularity at the origin which in real space predicts an intricate crossover between power laws of different kinds. We also seek for generic statistical properties of these quantities. The probability distributions of the structure factors are universal asymmetric exponential distributions. This research was supported in part by grants from the National Science Foundation through the Division of Materials Research. / Ph. D.
5

Nanostructured thermoelectric kesterite Cu2ZnSnS4

Isotta, Eleonora 07 September 2021 (has links)
To support the growing global demand for energy, new sustainable solutions are needed both economically and environmentally. Thermoelectric waste heat recovery and energy harvesting could contribute by increasing industrial process efficiency, as well as powering stand-alone devices, microgenerators, and small body appliances.The structural complexity of quaternary chalcogenide materials provides an opportunity for engineering defects and disorder, to modify and possibly improve specific properties. Cu2ZnSnS4 (CZTS, often kesterite), valued for the abundance and non-toxicity of the raw materials, seems particularly suited to explore these possibilities, as it presents several structural defects and polymorphic phase transformations. The aim of this doctoral work is to systematically investigate the effects of structural polymorphism, disorder, and defects on the thermoelectric properties of CZTS, with particular emphasis to their physical origin. A remarkable case is the order-disorder transition of tetragonal CZTS, which is found responsible for a sharp enhancement in the Seebeck coefficient due to a flattening and degeneracy of the electronic energy bands. This effect, involving a randomization of Cu and Zn cations in certain crystallographic planes, is verified in bulk and thin film samples, and applications are proposed to exploit the reversible dependence of electronic properties on disorder. Low-temperature mechanical alloying is instead discovered stabilizing a novel polymorph of CZTS, which disordered cubic structure is studied in detail, and proposed deriving from sphalerite-ZnS. The total cation disorder in this compound provides an uncommon occurrence in thermoelectricity: a concurrent optimization of Seebeck coefficient, electrical and thermal conductivity. These findings, besides providing new and general understanding of CZTS, can cast light on profitable mechanisms to enhance the thermoelectric performance of semiconducting chalcogenides, as well as delineate alternative and fruitful applications.

Page generated in 0.0979 seconds