• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 8
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 64
  • 64
  • 64
  • 64
  • 24
  • 21
  • 16
  • 14
  • 13
  • 12
  • 11
  • 11
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electrolyte-Based Organic Electronic Devices

Said, Elias January 2007 (has links)
The discovery of semi-conducting and conducting organic materials has opened new possibilities for electronic devices and systems. Applications, previously unattainable for conventional electronics, have become possible thanks to the development of conjugated polymers. Conjugated polymers that are both ion- and electron conducting, allow for electrochemical doping and de-doping via reversible processes as long as both forms of conduction remain available. Doping causes rearrangement of the -system along the polymer backbone, and creates new states in the optical band gap, resulting in an increased electronic conductivity and also control of the color (electrochromism). Doping can also occur by charge injection at a metal – semiconducting polymer interface. Electrochemical electronic devices and solid state devices based on these two types of doping are now beginning to enter the market. This thesis deals with organic based-devices whose working mechanism involves electrolytes. After describing the properties of conjugated polymers, fundamentals on electrolytes (ionic conductivity, types, electric double layer and the electric field distribution) are briefly presented. Thereafter, a short review of the field of organic field effect transistors as well as a description of transistors that are gated via an electrolyte will be reviewed. Paper I present a novel technique to visualize the electric field within a two-dimensional electrolyte by applying the electrolyte over an array of electronically isolated islands of electrochromic polymer material on a plastic foil. By observing the color change within each polymer island the direction and the magnitude of the electric field can be measured. This technology has applications in electrolyte evaluation and is also applicable in bio-analytical measurements, including electrophoresis. The focus of paper II lies on gating an organic field effect transistor (OFET) by a polyanionic proton conductor. The large capacitance of the electric double layer (EDL) that is formed at organic semiconductor/polyelectrolyte upon applying a potential to the gate, results in low operation voltages and fast response. This type of transistor that is gated via electric double layer capacitor is called EDLC-OFET. Because an electrolyte is used as a gate insulator, the role of the ionic conductivity of the electrolyte is considered in paper III. The effect on the electronic performance of the transistor is studied as well by varying the humidity level.
12

Electrolyte-Based Organic Electronic Devices

Said, Elias January 2007 (has links)
<p>The discovery of semi-conducting and conducting organic materials has opened new possibilities for electronic devices and systems. Applications, previously unattainable for conventional electronics, have become possible thanks to the development of conjugated polymers. Conjugated polymers that are both ion- and electron conducting, allow for electrochemical doping and de-doping via reversible processes as long as both forms of conduction remain available. Doping causes rearrangement of the -system along the polymer backbone, and creates new states in the optical band gap, resulting in an increased electronic conductivity and also control of the color (electrochromism). Doping can also occur by charge injection at a metal – semiconducting polymer interface. Electrochemical electronic devices and solid state devices based on these two types of doping are now beginning to enter the market.</p><p>This thesis deals with organic based-devices whose working mechanism involves electrolytes. After describing the properties of conjugated polymers, fundamentals on electrolytes (ionic conductivity, types, electric double layer and the electric field distribution) are briefly presented. Thereafter, a short review of the field of organic field effect transistors as well as a description of transistors that are gated via an electrolyte will be reviewed.</p><p>Paper I present a novel technique to visualize the electric field within a two-dimensional electrolyte by applying the electrolyte over an array of electronically isolated islands of electrochromic polymer material on a plastic foil. By observing the color change within each polymer island the direction and the magnitude of the electric field can be measured. This technology has applications in electrolyte evaluation and is also applicable in bio-analytical measurements, including electrophoresis. The focus of paper II lies on gating an organic field effect transistor (OFET) by a polyanionic proton conductor. The large capacitance of the electric double layer (EDL) that is formed at organic semiconductor/polyelectrolyte upon applying a potential to the gate, results in low operation voltages and fast response. This type of transistor that is gated via electric double layer capacitor is called EDLC-OFET. Because an electrolyte is used as a gate insulator, the role of the ionic conductivity of the electrolyte is considered in paper III. The effect on the electronic performance of the transistor is studied as well by varying the humidity level.</p>
13

The electronic structure and field effects of an organic-based room temperature magnetic semiconductor

Lincoln, Derek M. January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Full text release at OhioLINK's ETD Center delayed at author's request
14

Synthesis and characterization Naphtho[2,1-b:3,4-b']dithiophene-based organic semiconducting molecules for organic electronics

Li, Zhaoguang 25 February 2015 (has links)
Thienoacenes represent an intriguing class of organic semiconducting molecules with potential applications in organic electronics. Some of thienoacenes have been reported with high charge carrier mobility in organic field-effect transistors (OFET). OFETs based on naphtho[2,1-b:3,4-b’]dithiophene (NDT) exhibited moderate device performance and low-band gap donor-acceptor copolymers based on NDT showed a promising solar power conversion efficiency. In this thesis, four novel series of thienoacenes based on naphtho[2,1-b:3,4-b’]dithiophene backbone were designed and synthesized for OFET applications. Firstly, a novel series of p-type semiconducting naphthodithieno[3,2-b]thiophene derivatives (NDTT-n) composed of six-fused aromatic rings were designed and synthesized (Figure 1). The OFETs based on NDTT-10, and NDTT-12 fabricated by vacuum deposition showed a hole mobility of 0.22 and 0.13 cm2/(Vs), respectively with Ion/Ioff above 107 after annealing at 80 oC. Secondly, the derivatives of NDT fused with benzene rings at the flanks of thiophene, namely NBBT-n (Figure 2) were also designed and synthesized. OFETs based on NBBTF-10 fabricated by vacuum deposition exhibited a hole mobility of 0.35 cm2/(Vs) with a current on/off ratio of 106 107 after annealing at 160 oC. Further extension of π-conjugation of NDTT by incorporating with fused thiophenes leading to a new NBTBT-n series was also developed (Figure 3). The OFETs fabricated by NBTBT-10 showed the hole mobility up to 0.25 cm2/(Vs) with a current on/off ratio of 105 106 after annealing at 220 oC. Lastly, two dimensionally π-extended, butterfly-shaped thienoacenes (Figure 4) were also synthesized. The OFETs based on SMB-10 fabricated by spin-coating showed the best performance in this series with an average mobility of 0.027 cm2/(Vs) for five devices and the highest mobility of 0.038 cm2/(Vs) with a current on/off ratio of 106 107 by from chloroform. Key words: organic semiconducting molecules, organic field-effect transistor, thienoacene, charge carrier mobility.
15

Processing parameter effects on the molecular ordering and charge transport of poly(3-hexylthiophene) thin films

Chang, Mincheol 07 January 2016 (has links)
Conjugated polymers have attracted much interest as promising alternatives to inorganic semiconductors, due to their low-temperature, solution-based processability, which may provide for low-cost, large-area electronic device fabrication. However, commercialization of polymer-based electronic devices has been restricted owing to low device performance of solidified thin-films. In order to enhance charge transport of polymer semiconductor thin-films, the self-organization of organic polymer semiconductors into ordered supramolecular assemblies has been achieved by tuning a range of process parameters including film deposition method (spin vs. drop cast), solvent boiling point (low vs. high boiling point), polymer-dielectric interface treatment, and post-deposition processing (solvent vapor or thermal annealing). However, these strategies give rise to limitations for large-scale high-throughput processing due to associated pre- and/or post semiconductor deposition steps. Therefore, in this thesis, we identify alternative processing parameters (i.e., hydrogen bonds between good and poor solvents, UV irradiation to polymer precursor solutions, and combination of sonication and subsequent UV irradiation to polymer precursor solutions) which can contribute to enhancement in charge transport of a model polymer semiconductor, poly(3-hexylthiophene) (P3HT), eliminating the additional pre- and/or post-steps mentioned above. Further, we understand of how the processing parameters effect intra- and intermolecular interactions of the polymer chains, micro- through macroscopic morphologies, and charge transport characteristics of the resultant films.
16

Design and syntheses of hole and electron transport donor-acceptor polymeric semiconductors and their applications to organic field-effect transistors

Fu, Boyi 27 May 2016 (has links)
The π-conjugated organic and polymeric semiconducting materials have attracted much attention in the past years due to their significant potential in applications to electronic and optoelectronic devices including organic field-effect transistors (OFETs), organic photovoltaics (OPVs), and organic light-emitting diodes (OLEDs), etc. Yet, organic and polymeric semiconductors still have challenges associated with their relatively low charge carrier (hole and electron) transport mobilities and ambient stability in OFET applications. This dissertation discusses the molecular engineering on backbones and side-chains of π-conjugated semiconducting polymers to enhance the hole and electron field-effect mobilities. Three donor-acceptor copolymers, the hole transport (p-type) poly(hexathiophene-co-benzo- thiazole) (PBT6), the hole transport poly(thiophenes-benzothiadiazole-thiophenes-diketopyrrolo- pyrrole) (pTBTD), and the electron transport (n-type) poly(dithieno-diketopyrrolopyrrole-bithiazole) (PDBTz) have been developed. Besides, the effect of polymer side chains on polymer solution-processability and charge carrier transport properties was systematically investigated: a side chain 5-decylheptadecyl having the branching position remote from the polymer backbone merges the advantages of the improved solubility from traditional branched side chains in which the branch chains are close to polymer backbone and the effective π-π intermolecular interactions commonly associated with linear side chains. This indicates the potential of side chain engineering to facilitate the charge carrier transport performance of organic and polymeric semiconductors. Additionally, PDBTz solution-processing to OFETs based on non-halogenated solvents (xylenes and tetralin) was studied. The resultant thin-film OFET devices based on non-halogenated solvents exhibited similar film morphology and field-effect electron mobilities as the counterparts based on halogenated solvents, indicative of the feasibility of developing high mobility OFET devices through more environmentally-benign processing.
17

Molecular weight effects of PBT-6 polymeric semiconductor on charge carrier mobility

Ravi Sankar, Ashwin 13 January 2014 (has links)
Organic π-conjugated Donor-Acceptor copolymers are emerging as potential candidate materials for organic field effect transistor (OFET) and organic photovoltaic (OPV) applications. The electron-deficient benzothiadiazole group coupled with an electron-rich oligothiophene to form donor-acceptor copolymers has attracted significant attention. These low optical band gap materials absorb photons in the range of 400-800 nm and exhibit good thermal stability. In particular, poly(benzothiadiazole-sexithiophene) (PBT6) exhibits excellent performance in optoelectronic devices and high thermal stability. Here, we present the chemical synthesis and characterization of the polymer, PBT6. Three samples of PBT-6 with differing molecular weights in the range of Mn 18000-45000 Da were synthesized. Each polymer was characterized with respect to its photophysical, thermal properties and field-effected mobility was determined. Devices were prepared by drop-casting polymer solutions in 1,2-dichlorobenzene (DCB) onto an OFET (bottom gate/bottom contact) substrate and the devices were used to examine the charge transport properties of each polymer system. The optimal solvent to be used for processing technique was determined and surface techniques using OTS-8 and OTS-18 were compared through contact angle measurements. The measured charge carrier mobilities were in the range of 0.45-0.6 cm² / V.s. Polymer films prepared via drop-casting and which were thermal annealed exhibit mobilities as high as 0.825 cm² / V.s. This work examines the effect of molecular weight on the charge carrier transport properties and demonstrates the correlation of performance with molecular ordering. Drop-casted films of PBT-6 exhibit highly ordered crystalline lamellar structure with high degree of π- π stacking with edge-on orientation on the substrate. The longer conjugation lengths promote intrachain charge transfer. This high degree of molecular ordering in high MW samples of PBT6 improves the interchain and intrachain charge transfer leading to enhanced mobilities. The increased molecular weight (MW) facilitates in forming more uniform thin films which is vital in processing and application of polymer thin film technologies. These results and observations clearly demonstrate the potential of PBT-6 as a semiconducting material for Optoelectronic devices.
18

Development of photoswitchable charge-transfer materials with photochromic spirooxazines: from molecular systems to surfaces

Kurimoto, Aiko 28 February 2018 (has links)
Optical modulation of the physical properties of materials is important for future development of optical memories and switches, optoelectronics, and smart surfaces. Incorporation of an optically bistable photochromic compound into an electronically bifunctional material is a promising strategy for a development of photoswitchable materials. Photochromic spirooxazine ligands undergo light-induced ring-opening and closure between the closed-spirooxazine (SO) and open-photomerocynanine (PMC) forms. The structural reorganization leads to accompanying changes in electronic structure which can lead to a change in the oxidation/reduction potentials and spin state of a bound metal center. Changes in the ligand field about a metal center in turn can lead to “non-classical” photoinduced magnetic (PIM) effects. The “non-classical” PIM effect is an effect that occurs through ligand-centered processes via the metal center, rather than direct excitation at the metal center. The structural change of the photochromic compounds also results in a change in the frontier orbital energies and donor-acceptor character, which may lead to optically-gated charge-transfer and energy-transfer processes. In this dissertation, the structural factors that govern thermal relaxation of spirooxazines, as optical control units, was investigated toward controlling the photostationary states of this important class of photochromes. The electronic structure of the PMC form of azahomoadamantyl-based spirooxazines was found to control the thermal coloration/decoloration rates of photochromic spirooxazines. A significant charge-separated character of the PMC form was correlated with the slow thermal coloration/decoloration rates in spirooxazines. This concept was then extended to an investigation of the effect of Lewis-acidic metal complexation. Solution study of the charge-separated character of the PMC form via metal complexation of the photochromic spirooxazines supported the correlation between the charge-separated character of the PMC form and the rate of the thermal coloration/decoloration. The studies provide a potential pathway for modulating PMC thermal relaxation rates through optimization of the structure of the spirooxazines and metal complexation. The studies were then extended to an investigation of the photomodulation of charge-transfer processes in cobalt multinuclear clusters by photoisomerization of photochromic spirooxazines. Incorporation of optically bistable phenanthroline-spirooxazine ligands into a magnetically bistable cobalt-dioxolene valence tautomeric cluster resulted in large magnetic moments in the solid and solution states. This study suggests that the redox-isomeric behavior of the cobalt dioxolenes can be coupled to isomerization of the photochromic ligand in the solution state when the π-acceptor ability of the photochromic ligands align with the direction of charge transfer of the cobalt dioxolene components. The potential of these cobalt multinuclear clusters to enhance the relaxivity of water in MRI for biological imaging was investigated. A cobalt tetranuclear cluster was prepared and found to exhibit high magnetic moments in solution at room temperature, and large relaxivities relative to commercially available gadolinium based MRI contrast agents. Lastly, the photomodulation of ionic doping of graphene organic field-effect transistors (OFETs) by photochromic spirooxazines was investigated. The electron donor or acceptor nature of the photochromic isomers modulates the direction and magnitude of ionic doping of graphene, and in turn the gate voltages of graphene OFETs, leading to optical modulation of OFET gate voltages for data processing and memory technologies. / Graduate / 2020-02-08
19

DESIGN AND SYNTHESIS OF FUNCTIONAL ORGANIC MATERIALS

Petty, Anthony Joseph, II 01 January 2018 (has links)
Control of solid state ordering in conjugated small molecules is paramount to the continued development and implementation of organic materials in electronic devices. However, there exists no reliable method on which to predicatively determine how a change to the molecular structure will impact the solid-state packing. As such, the molecule must be synthesized before its solid-state packing can be definitively evaluated. However, once the packing structure of a material is known there exist both qualitative structure- function relationships derived from the literature, as well as quantitative computational methods that can be employed to suggest if a material will perform well in a given device. This type of bottom-up strategy is used in Chapter 2 to design and synthesize a high performance material for organic field effect transistors. A core molecule is synthesized, and through rigorous optimization of pendant and solubilizing groups a material with exceptional solid-state packing is developed and its performance in an organic field effect transistor is discussed. Chapter 3 discusses the use of conjugated organic molecules in conjunction with inorganic materials to develop hybrid organic/inorganic materials. A scalable synthesis is developed so derivatives can be rapidly synthesized and their properties evaluated. Two classes of materials are developed and synthesized: tetracene-based ligands for quantum dots and diammonium-substituted anthracene and tetracene derivatives for 2D-perovskites. Initial results for both classes of materials are presented. Chapter 4 discusses the topochemical photopolymerization of heptacene [4+4] dimers. Multiple derivatives were synthesized in order to give the ideal alignment of molecules in the crystal, followed by irradiation of crystals to give crystal templated polymerization. In Chapter 5, triarylmethane derivatives are synthesized and their performance as radiochromic sensors is evaluated. Chapter 6 involves the development of a robust synthetic scheme toward a difficult to attain π- extended regioisomer of pyrene. Photophysical characterization reveals that the direction of π-extension from the pyrene core has a profound effect on electron delocalization.
20

Device physics of organic field effect transistors and organic photovoltaic devices

Dunn, Lawrence Robert 28 April 2014 (has links)
In this dissertation novel work is presented showing the performance and device physics of Organic Field Effect Transistors (OFETs) and bulk heterojunction Organic Photovoltaic (OPV) devices fabricated using novel acceptor small molecules. Pentacene and N,N’-bis(n-octyl)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI-8CN₂) were used as the active layer in p-channel and n-channel Organic Field Effect Transistors (OFETs), respectively, and novel pulsed voltage transient measurements were developed in order to extract transient mobilities and carrier velocities from the transistor response of the device, which were well correlated with the corresponding DC OFET characteristics. A distributed RC network was used to model the OFET’s channel and the transient and DC characteristics of the devices were successfully reproduced. Temperature dependent studies of the DC field effect mobilities and transient mobilities of these two materials were carried out and the results used to extract information on charge carrier transport in the materials at varying time scales. Open-circuit voltages of the OPV devices are correlated with the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) levels various acceptor small molecules and donor polymers comprising the active layers of the devices. / text

Page generated in 0.1027 seconds