• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Speciation and transport of anthropogenic 129Iodine and natural 127Iodine in surface and subsurface environments

Schwehr, Kathleen Ann 17 February 2005 (has links)
Iodine is a biophilic element with one natural long-lived isotope, 129I (t1/2= 15.6 million years), and one stable isotope, 127I. The inventory of 129I in surface environments has been overwhelmed by anthropogenic releases over the past 50 years. The objective of this study is to utilize the elevated concentration and biophilic nature of 129I and the isotopic ratio of iodine (129I/127I) as a tracer of water mass movement and organic matter. Additionally, the significantly elevated values of 129I/127I could provide a geochronometer, similar to the way 14C is used, particularly for terrestrial organic matter that is less than 50 years old. A series of laboratory experiments and field investigations were carried out to characterize the dominant chemical forms of dissolved iodine, i.e., iodide (I-), iodate (IO 3-), and organic iodine (DOI) in natural waters. Sensitive methods were developed for the analysis of nanomolar quantities of 127I species in a variety of environmental systems using high performance liquid chromatography (HPLC) and an organic iodine decomposition technique, dehydrohalogenation. The potential use of 129I/127I as a hydrological tracer was evaluated through measurements of 129I and 127I, which were carried out in wells in the artificially recharged ground water basin of Orange County, California. Literature values of aquifer ages based on 3H/3He and δ18O tracer data, as well as time-series data of chloride and Santa Ana River flow rates over the past decade were compared to values for 129I and 127I. The iodine isotopes demonstrated a conservative behavior in these aquifers, suggesting that the observed variations of these isotopes reflect past river flow conditions during the time of recharge. The feasibility of using 129I/127I ratios to trace terrestrial organic matter across an estuary was tested. A novel analytical technique to determine 129I/127I ratios in DOI was developed for this investigation. The results of a Galveston Bay transect clearly show that 129I/127I ratios in DOI can remain elevated up to salinity of about 15, but that 129I/127I values of inorganic iodine species do not show any trend with change in salinity gradient due to fast isotopic and chemical equilibration in the estuarine waters.
2

Speciation and transport of anthropogenic 129Iodine and natural 127Iodine in surface and subsurface environments

Schwehr, Kathleen Ann 17 February 2005 (has links)
Iodine is a biophilic element with one natural long-lived isotope, 129I (t1/2= 15.6 million years), and one stable isotope, 127I. The inventory of 129I in surface environments has been overwhelmed by anthropogenic releases over the past 50 years. The objective of this study is to utilize the elevated concentration and biophilic nature of 129I and the isotopic ratio of iodine (129I/127I) as a tracer of water mass movement and organic matter. Additionally, the significantly elevated values of 129I/127I could provide a geochronometer, similar to the way 14C is used, particularly for terrestrial organic matter that is less than 50 years old. A series of laboratory experiments and field investigations were carried out to characterize the dominant chemical forms of dissolved iodine, i.e., iodide (I-), iodate (IO 3-), and organic iodine (DOI) in natural waters. Sensitive methods were developed for the analysis of nanomolar quantities of 127I species in a variety of environmental systems using high performance liquid chromatography (HPLC) and an organic iodine decomposition technique, dehydrohalogenation. The potential use of 129I/127I as a hydrological tracer was evaluated through measurements of 129I and 127I, which were carried out in wells in the artificially recharged ground water basin of Orange County, California. Literature values of aquifer ages based on 3H/3He and δ18O tracer data, as well as time-series data of chloride and Santa Ana River flow rates over the past decade were compared to values for 129I and 127I. The iodine isotopes demonstrated a conservative behavior in these aquifers, suggesting that the observed variations of these isotopes reflect past river flow conditions during the time of recharge. The feasibility of using 129I/127I ratios to trace terrestrial organic matter across an estuary was tested. A novel analytical technique to determine 129I/127I ratios in DOI was developed for this investigation. The results of a Galveston Bay transect clearly show that 129I/127I ratios in DOI can remain elevated up to salinity of about 15, but that 129I/127I values of inorganic iodine species do not show any trend with change in salinity gradient due to fast isotopic and chemical equilibration in the estuarine waters.

Page generated in 0.0454 seconds