• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Speciation and transport of anthropogenic 129Iodine and natural 127Iodine in surface and subsurface environments

Schwehr, Kathleen Ann 17 February 2005 (has links)
Iodine is a biophilic element with one natural long-lived isotope, 129I (t1/2= 15.6 million years), and one stable isotope, 127I. The inventory of 129I in surface environments has been overwhelmed by anthropogenic releases over the past 50 years. The objective of this study is to utilize the elevated concentration and biophilic nature of 129I and the isotopic ratio of iodine (129I/127I) as a tracer of water mass movement and organic matter. Additionally, the significantly elevated values of 129I/127I could provide a geochronometer, similar to the way 14C is used, particularly for terrestrial organic matter that is less than 50 years old. A series of laboratory experiments and field investigations were carried out to characterize the dominant chemical forms of dissolved iodine, i.e., iodide (I-), iodate (IO 3-), and organic iodine (DOI) in natural waters. Sensitive methods were developed for the analysis of nanomolar quantities of 127I species in a variety of environmental systems using high performance liquid chromatography (HPLC) and an organic iodine decomposition technique, dehydrohalogenation. The potential use of 129I/127I as a hydrological tracer was evaluated through measurements of 129I and 127I, which were carried out in wells in the artificially recharged ground water basin of Orange County, California. Literature values of aquifer ages based on 3H/3He and δ18O tracer data, as well as time-series data of chloride and Santa Ana River flow rates over the past decade were compared to values for 129I and 127I. The iodine isotopes demonstrated a conservative behavior in these aquifers, suggesting that the observed variations of these isotopes reflect past river flow conditions during the time of recharge. The feasibility of using 129I/127I ratios to trace terrestrial organic matter across an estuary was tested. A novel analytical technique to determine 129I/127I ratios in DOI was developed for this investigation. The results of a Galveston Bay transect clearly show that 129I/127I ratios in DOI can remain elevated up to salinity of about 15, but that 129I/127I values of inorganic iodine species do not show any trend with change in salinity gradient due to fast isotopic and chemical equilibration in the estuarine waters.
2

Speciation and transport of anthropogenic 129Iodine and natural 127Iodine in surface and subsurface environments

Schwehr, Kathleen Ann 17 February 2005 (has links)
Iodine is a biophilic element with one natural long-lived isotope, 129I (t1/2= 15.6 million years), and one stable isotope, 127I. The inventory of 129I in surface environments has been overwhelmed by anthropogenic releases over the past 50 years. The objective of this study is to utilize the elevated concentration and biophilic nature of 129I and the isotopic ratio of iodine (129I/127I) as a tracer of water mass movement and organic matter. Additionally, the significantly elevated values of 129I/127I could provide a geochronometer, similar to the way 14C is used, particularly for terrestrial organic matter that is less than 50 years old. A series of laboratory experiments and field investigations were carried out to characterize the dominant chemical forms of dissolved iodine, i.e., iodide (I-), iodate (IO 3-), and organic iodine (DOI) in natural waters. Sensitive methods were developed for the analysis of nanomolar quantities of 127I species in a variety of environmental systems using high performance liquid chromatography (HPLC) and an organic iodine decomposition technique, dehydrohalogenation. The potential use of 129I/127I as a hydrological tracer was evaluated through measurements of 129I and 127I, which were carried out in wells in the artificially recharged ground water basin of Orange County, California. Literature values of aquifer ages based on 3H/3He and δ18O tracer data, as well as time-series data of chloride and Santa Ana River flow rates over the past decade were compared to values for 129I and 127I. The iodine isotopes demonstrated a conservative behavior in these aquifers, suggesting that the observed variations of these isotopes reflect past river flow conditions during the time of recharge. The feasibility of using 129I/127I ratios to trace terrestrial organic matter across an estuary was tested. A novel analytical technique to determine 129I/127I ratios in DOI was developed for this investigation. The results of a Galveston Bay transect clearly show that 129I/127I ratios in DOI can remain elevated up to salinity of about 15, but that 129I/127I values of inorganic iodine species do not show any trend with change in salinity gradient due to fast isotopic and chemical equilibration in the estuarine waters.
3

Nanoscopic metal fluoride based novel solid catalysts

Patil, Pratap Tukaram 19 October 2009 (has links)
Metallfluoride sind dank ihrer hohen chemischen und thermischen Stabilität, insbesondere bei Reaktionen unter Beteiligung von hoch korrosiven Gasen (HF, HCl, Cl2, F2) den entsprechenden Oxiden überlegen. Über den Sol-Gel Prozess synthetisierte Produkte weisen oft spezifische, zum Teil sehr unterschiedliche Eigenschaften im Vergleich zu klassisch hergestellten Verbindungen auf. In dieser Arbeit wurde der Sol-Gel Prozess zur Herstellung von binären Fluoriden (AlF3, MgF2, CaF2, CuF2 und FeF3) genutzt und zum Teil weiter entwickelt sowie das Synthesepotential dieser Methode als Zugang für komplexe Fluoride (KMgF3, K3AlF6), für Metallfluorid-geträgerte „nano Edelmetall-Systeme (Pd/AlF3, Pt/AlF3, Pd/CaF2, Pd/MgF2) und für Gast–Wirt–Metallfluorid-Systeme (CuF2/AlF3, FeF3/AlF3) untersucht. Die Eigenschaften der als kompakte Materialien hergestellten Metallfluorid Systeme wurden mit Hilfe spektroskopischer Methoden untersucht und dabei insbesondere deren Oberflächeneigenschaften bestimmt. Die neuen Materialien wurden für die Nutzung akademisch und industriell bedeutsamer Katalysereaktionen evaluiert und mit klassischen Katalysatoren verglichen. Es konnte gezeigt werden, dass der Sol-Gel Prozess für Fluoride zu neuartigen Materialien mit außergewöhnlichen Eigenschaften führt. Insbesondere infolge der Synthese-bedingten Vergrößerung der spezifischen Oberflächen um einen bis zu 20-fachen Faktor im Vergleich zu klassisch hergestellten Fluoriden konnten auch eine Reihe von katalytisch interessanten Metallen (Pd, Pt) in die nanoskopischen Festkörperfluoride eingebracht werden. Die TEM Aufnahmen zeigen, dass z. B. 2-5 nm große Palladiumpartikel sehr homogen in ca. 80 nm große CaF2- bzw. 20 nm große AlF3-Matrices in nur einem einzigen Reaktionsschritt eingeführt werden können. Die neuen Materialien wurden in verschiedenen katalytischen Reaktionen getestet und zeigten sich in mehreren Fällen den „Standard Katalysatoren“ überlegen. / Because of their high chemical and thermal stabilities, metal fluorides have found to be advantageous over metal oxides in such cases where reactions involving generation of corrosive acids like HCl and HF are concerned. The Sol-gel method is known for the synthesis of materials with considerably different properties to those prepared by classical routes. In this work, sol-gel route has been employed for the synthesis of binary fluorides (AlF3, MgF2, CaF2, CuF2 and FeF3), hydroxyfluorides [AlF3-x(OH)x, MgF2-x(OH)x] complex fluorides (KMgF3, K3AlF6), metal fluoride supported nanoscopic noble metals (Pd, Pt) and host-guest fluoride systems (CuF2/AlF3, FeF3/AlF3). Besides the successful synthesis of metal fluorides described above, the present thesis deals with investigation of their bulk and surface properties using various analytical and spectroscopic methods (XRD, BET, NH3-TPD FTIR-pyridine adsorption, XPS, microscopic studies) as well as with their catalytic properties for the reactions of academic and industrial interest. Metal fluorides prepared via sol-gel method have shown to possess extraordinary surface properties in terms of surface area, particle size, porosity, Lewis acidity and distortion in their structures as compared to those of classical methods like aqueous synthesis or impregnations. A homogeneous dispersion of Pd nanoparticles supported on high surface area metal fluoride prepared by this method was confirmed by XRD, XPS and TEM imaging. Catalytic properties of these materials have been investigated for dehydrofluorination of hydrofluorocarbons, isomerization of citronellal, hydrodehalogenation of chlorodifluoromethane, Suzuki cross coupling and oxidative fluorination of benzene.
4

Darstellung bor- und phosphorhaltiger Ringe durch Reaktionen von Halogenboranen und -phosphanen mit Bis(tert.-butyl-methyl)ketazin / The synthesis of heterocyclic ring systems containing boron and phosphorus by reacting bis(tert.-butyl-methyl)ketazine with halofunctional borane or phosphane derivates

Armbruster, Florian 28 April 2004 (has links)
No description available.

Page generated in 0.6432 seconds