• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 7
  • 7
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 195
  • 195
  • 136
  • 77
  • 69
  • 39
  • 30
  • 26
  • 25
  • 24
  • 24
  • 24
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Degradation Mechanism of Expanded Polystyrene (EPS) Foam in Lost Foam Casting, PIPS Approach for Synthesis and Novel Expansion Techniques for Cellular Foam

Sen, Indraneel 01 December 2007 (has links)
Lost Foam Casting (LFC) is a metal casting technology that facilitates fabrication of near-net shape metal castings using expanded polystyrene (EPS) foam patterns that are coated with refractory slurry and is effective for producing aluminum or iron castings of complicated geometry. However, the LFC process can produce considerable amount of scrap due to casting defects. Removing the EPS thermal decomposition products through the ceramic coating ahead of the advancing metal front during the liquid metal pour is a key factor in obtaining a defect free casting. Developing a fundamental understanding of foam degradation mechanism is essential in improving LFC process. Modeling of the LFC process till date has completely neglected the effect of styrene on the overall thermal degradation of EPS foam. The dissolution effect of styrene is investigated by presenting the thermodynamic principles of polymer solution theory along with experiments to verify its impact on polystyrene degradation. By subjecting EPS Foam samples directly either to thermal radiation or to styrene vapor, it is demonstrated that styrene’s solubility of polystyrene significantly alters the degradation mechanism of EPS foam in LFC process and thus can control the metal fill process leading to reduction of defects in castings. LFC process uses expanded polystyrene foam patterns in which isomers of pentane are used as blowing agents to achieve the expansion. In order to expand polystyrene, steam is used as a heat source and the expansion process takes place via conduction of heat from the surface of unexpanded polystyrene beads into the bulk. Pentane isomers are volatile organic compounds and green house gases that are either liberated directly into the atmosphere or combusted using expensive setup. The environmental impact of the current process using pentane as an expansion agent has been considered and a new method for manufacturing of EPS foam has been developed with benign expansion agent. Laboratory experiments are demonstrated where PS pellets are successfully expanded into foam. Novel heating technology using microwave radiation is proposed and implemented in order to achieve efficient volumetric heating for the manufacturing of foam with target density.
12

Mesophase Pitch-based Carbon Fiber and Its Composites: Preparation and Characterization

Liu, Chang 01 December 2010 (has links)
The objective of this study is to investigate the relationship among process, structure, and property of the UTSI pitch-based carbon fibers and optimize carbon fiber’s mechanical properties through the stabilization process. Various analysis techniques were employed throughout these investigations which include the Scanning Electron Microscope (SEM), optical microscope, Dia-stron system, MTS, and ImageJ. Several fiber process techniques including fiber spinning, stabilization, and carbonization were explored to determine the effect of the thermal process on the fiber yield, fiber diameter, the sheath-core structure of stabilized fibers, the pac-man and hollow core structures of carbonized fibers, and the resulting mechanical properties of the carbon fibers. It was found that stabilization time and the temperature stepping had a great deal on influence on the resulting carbon fibers. Larger diameter fiber is easy to form sheath-core structure in the stabilization process. Pac-man structure was developed at 600°C during the carbonization. Both stabilization duration and the carbonization temperature control the resulting carbon fiber diameter and fiber structure defects such as the pac-man and hollow core defects. Multi-step stabilization can reduce the total stabilization duration and improve the mechanical properties of the resulting carbon fibers. Fiber structure non-uniformities including fiber diameter distributions for a bundle fiber or along a single fiber, and pac-man angles were determined. Statistical analysis revealed the distribution of the carbon fiber cross-sectional areas and the result is compared against commercial available carbon fibers. Carbon fiber sandwiched composites (CFSCs) were fabricated with UTSI carbon fiber and commercial PAN-based carbon fibers. Several configurations of sandwich structured composites were explored to test the flexural properties with varying sandwich thickness.
13

Development of Facile Microfabrication Technologies for the Fabrication and Characterization of Multimodal Impedimetric, Plasmonic, and Electrophysiological Biosensors

Hart, Cacie 01 January 2020 (has links) (PDF)
The objective of this dissertation was to develop novel methods of patterning inorganic and organic materials, develop biocompatibility evaluations, and subsequently apply these methods toward developing biosensors and lab-on-a-chip devices, such as Interdigitated Electrodes (IDEs) and Microelectrode Arrays (MEAs) on non-traditional (such as nanostructured and plasmonic) polymer substrates or deploy these methods to enhance precision cellular placement on traditional (glass) MEA substrates. It was hypothesized that a combination of such facile microfabrication techniques and patterning technologies on traditional and non-traditional substrates would increase the sensitivity and selectivity of such sensor platforms by several orders of magnitude, and potentially introduce new modalities for cell-based biosensing. In order to demonstrate the biological functionality of these new IDEs and MEAs, a variety of cell cultures were used (cardiac, stem cell, and endothelial cells) to study the growth, proliferation, modes of increasing sensitivity and response to various compounds in vitro (outside the body).
14

Enhancement of absorptance by ultrafast laser pulse shaping for efficient laser processing of thin polymers

Rahaman, Arifur 01 January 2020 (has links) (PDF)
Ultrashort-pulsed lasers have been used for high precision processing of a wide range of materials including dielectrics, semiconductors, metals, and polymers/polymer composites, enabling numerous applications ranging from micromachining, photonics to life sciences. However, there are challenges when applying this technology in the industry, which requires scale and throughput different from lab use. The goal of this research is to understand how ultrafast laser pulses interact with thin polymers/polymer composite materials and develop a method that is efficient for ultrafast laser processing of these materials. It is a common practice in industrial applications to run the laser at a high repetition rate and hence high average power. However, the heat accumulation under such processing conditions will deteriorate the processing quality, especially for polymers, which typically have a low melting temperature. An analytical solution for two-dimensional modeling of the temperature distribution has been presented and the solution is used to understand the effect of laser parameters on ultrafast laser processing of polypropylene (PP), which is an important polymer for both scientific and industrial applications. Laser cutting experiments are carried out on PP sheets to correlate with the theoretical calculation. This study shows that in laser cutting, the total energy absorbed in the material and the intensity are two important figures of merit to predict the cutting performance. It is found that heat accumulation can be avoided by a proper choice of the processing conditions and the optical properties (i.e. reflectance, transmittance, and absorptance) are important parameters to control processing with ultrafast lasers. To determine the reflectance, transmittance, and absorptance, time-resolved, single-shot measurements are performed in ultrafast laser interaction with polypropylene for a wide range of laser pulse energies. The absorptance during the ultrafast laser interaction with polymers is divided into the different linear and non-linear effective absorption channels and the absorption mechanism of ultrafast laser interaction with polymers in near-infrared wavelength are explained with a model that takes into account different effective absorption channels and suggests that the non-linear absorption originates from vibrational overtone/combination absorption. The enhancement of the absorptance has been investigated for efficiently processing thin polymers with ultrafast lasers by changing pulse duration. It is suggested from this study that the intense shorter pulse (167 fs) is more efficient for surface processing as most of the energy absorbed at the surface due to the strong nonlinear absorption, while a longer pulse (1000 fs) is more efficient for bulk processing for polymers. The results are useful for designing and controlling ultrafast laser processing of polymers and optimizing laser process parameters for the most efficient processing of polymers.
15

Third Order Nonlinearity Of Organic Molecules

Hu, Honghua 01 January 2012 (has links)
The main goal of this dissertation is to investigate the third-order nonlinearity of organic molecules. This topic contains two aspects: two-photon absorption (2PA) and nonlinear refraction (NLR), which are associated with the imaginary and real part of the third-order nonlinearity (χ (3)) of the material, respectively. With the optical properties tailored through meticulous molecular structure engineering, organic molecules are promising candidates to exhibit large third-order nonlinearities. Both linear (absorption, fluorescence, fluorescence excitation anisotropy) and nonlinear (Z-scan, two-photon fluorescence, pump-probe) techniques are described and utilized to fully characterize the spectroscopic properties of organic molecules in solution or solid-state form. These properties are then analyzed by quantum chemical calculations or other specific quantum mechanical model to understand the origins of the nonlinearities as well as the correlations with their unique molecular structural features. These calculations are performed by collaborators. The 2PA study of organic materials is focused on the structure-2PA property relationships of four groups of dyes with specific molecular design approaches as the following: (1) Acceptor-π-Acceptor dyes for large 2PA cross section, (2) Donor-π-Acceptor dyes for strong solvatochromic effects upon the 2PA spectra, (3) Near-infrared polymethine dyes for a symmetry breaking effect, (4) Sulfur-squaraines vs. oxygen-squaraines to study the role of sulfur atom replacement upon their 2PA spectra. Additionally, the 2PA spectrum of a solid-state single crystal made from a Donor-π-Acceptor dye is measured, and the anisotropic nonlinearity is studied with respect to different incident polarizations. These studies further advance our iv understanding towards an ultimate goal to a predictive capability for the 2PA properties of organic molecules. The NLR study on molecules is focused on the temporal and spectral dispersion of the nonlinear refraction index, n2, of the molecules. Complicated physical mechanisms, originating from either electronic transitions or nuclei movement, are introduced in general. By adopting a prism compressor / stretcher to control the pulsewidth, an evolution of n2 with respect to incident pulsewidth is measured on a simple inorganic molecule –carbon disulfide (CS2) in neat liquid at 700 nm and 1064 nm to demonstrate the pulsewidth dependent nonlinear refraction. The n2 spectra of CS2 and certain organic molecules are measured by femtosecond pulses, which are then analyzed by a 3-level model, a simplified "Sum-over-states" quantum mechanical model. These studies can serve as a precursor for future NLR investigations.
16

Organic Photovoltaics Based on P3HT/PCBM: Correlating Efficiency and Morphology

Chen, Dian 01 September 2011 (has links)
Controlling the morphology of thin films is key in optimizing the efficiency of polymer-based photovoltaic (PV) devices. The morphology and interfacial behavior of the multicomponent active layers confined between electrodes are strongly influenced by the preparation conditions. Results obtained in this work quantitatively show the photovoltaic device performance is strongly affected by the nanoscopic morphology, crystal orientation, composition distribution and the interdiffusion behavior of the photoactive layer. To better understand the physics of the photoactive layer in the organic photovoltaic devices, it is necessary to gain a quantitative understanding of the morphology and the manner in which it develops. A key element in the kinetics associated with the structure development is the interdiffusion of the components. To that end we used poly(3-hexylthiophene) (P3HT) / [6,6]-phenyl C61- butyric acid methyl ester (PCBM) bilayers as a model to investigate the interdiffusion of the components and its role in the development of the morphology. A detailed description of the diffusion behavior and the morphology developed from a layer of P3HT in contact with a layer of PCBM during thermal annealing is given. Amorphous P3HT and PCBM are shown to be highly miscible and PCBM can penetrate into the P3HT layer through the P3HT amorphous region and form the bulk heterojunction structure within a few second of annealing at 150 oC. The results indicated that one phase is a pure P3HT crystal domain and the other phase is the mixture of amorphous P3HT and PCBM, which is not consistent with a phase separation of the components by a spinodal decomposition mechanism. We put forth an alternative mechanism, namely a competitive crystallization/diffusion argument, to describe the origin of the morphology. These findings provide new insights and guidance in the generation of active layers in organic photovoltaics that are crucial in enhancing the device performance. Textured organic solar cells were also studied, providing another route to fabricate higher performance devices.
17

Costume Jewelry Using Organic Materials Found in the Coastal Area of Texas

Simpson, Cherry Lauderdale 08 1900 (has links)
This manuscript records an adventure in exploring the inherent possibilities of organic forms for use in the designing of jewelry.
18

Evaluation of External Coating Performance on Buried Pipelines in the Oil and Gas Industry

Alrudayni, Mohammed A 24 November 2015 (has links)
Protective coatings is used to enhance the corrosion resistance of buried pipelines. However, the effectiveness of epoxy-coatings may be compromised due to inadvertent presence of surface damage and coating disbondment. Additionally, the disbonded coated panels is expected to be less effective than that of scratched or un-defected panels. This research was designed to evaluate the coating performance of FBE and hybrid epoxy in simulated Arabian Gulf water and synthetic Sabkha. The influence of coating damage and disbondment on corrosion resistance was also investigated. Results of this research indicated a reduction in the adhesion bond between the coatings and substrate. The electrochemical impedance measurements demonstrated the need for an appropriate interpretation of results when this technique is used. The corrosion current density measurements indicated that both media are corrosive. Protective coatings under investigation did not show any blistering effect, loss of adhesion or color change under test conditions, thus reflecting their excellent corrosion resistance property.
19

NANOMATERIALS: FROM INTERFACIAL CHARACTERISTICS TO DEVICE APPLICATIONS

Wang, Kewei 04 1900 (has links)
<p>Nanomaterials have been heavily studied in the past two decades. Previous findings have demonstrated that the characteristics of nanocomposites and the performance of nanomaterial-based devices are both determined by the interfacial characteristics of the nanomaterials. However, there are still some remaining challenges from interfacial characteristics to device applications, which are specified as follows: the difficulty in identifying the interfacial contacts of nanostructured surfaces, the instability of nanocomposite surfaces, and the under-researched mechanism of the correlation between interfacial characteristics and the performance of devices.</p> <p>Therefore, the main theme of this thesis is to investigate the interfacial contacts of nanostructured solid-liquid interfaces by direct observation, and to develop a stable nanocomposite based on which the direct observation of the interfacial contact can be better conducted, and to eventually investigate the effect of interfacial contacts on the performance of organic solar cells.</p> <p>As the previous identification of the solid-liquid interface is limited to a microscale range, a direct method of tracing the different wetting states of water was developed, on nanostructured surfaces. This method provided an answer to a long standing question of, whether there is a transition from Wenzel to Cassie states in the sliding angle drop on nanocomposite thin films. In order to complete the observation of the wetting states of water, a stable superhydrophobic nanocomposite thin film with hierarchical structure was developed.</p> <p>Furthermore, with the knowledge of identifying the wetting states and the preparing procedures of the nanocomposites, a surfactant-free small-molecule nanoparticle organic solar cell with a much improved fill factor was developed by spin coating. The inverse correlation of series resistance and parallel resistance was discovered, due to the morphology change and the variation of the charge carrier concentration near the donor-acceptor interface in small-molecule organic solar cells.</p> / Doctor of Philosophy (PhD)
20

Advanced Electrode Materials for Electrochemical Supercapacitors

Ariyanayagam, Deepak Kumarappa 04 1900 (has links)
<p>Electrochemical supercapacitors (ES) have become an attractive research interest in advanced power systems and found many applications as an energy storage device in number of areas. The fabrication of advanced electrodes with novel materials and new techniques plays a key part in determining the properties of ES. Conducting polymer polypyrrole (PPY) has been found to be a promising electrode material for ES due to its high pseudo-capacitance and good electrical conductivity.</p> <p>Polypyrrole (PPY) films were successfully obtained on stainless steel substrates by anodic electropolymerization. Anionic dopants such as 2,6-naphthalenedisulfonic acid disodium salt (NSA), chromotropic acid disodium salt (CHR) and gallic acid were used for the synthesis of PPY. The roles of additives in the electrodeposition process have been discussed. The deposition was performed galvanostatically or potentiodynamically and the electrochemical properties of PPY have been investigated and compared by using different characterization techniques.</p> <p>The comparison of the experimental data for NSA, CHR and gallic acid showed the influence of aromatic ring and OH groups on the capacitive behaviour of PPY films. Adherent PPY films were obtained from pyrrole solutions containing CHR as dopant. The specific capacitance (SC) increased with increasing pyrrole and dopant concentration in the solutions used for deposition. The PPY films prepared on stainless steel substrates by electropolymerization are promising electrode materials for ES.</p> / Master of Applied Science (MASc)

Page generated in 0.0742 seconds