Spelling suggestions: "subject:"organischen biomoleküle"" "subject:"organischen gasmoleküle""
1 |
Epitaxial nanolayers of large organic molecules / Epitaktische Nanoschichten großer organischer Moleküle: Quaterrylene auf organischen und anorganischen Substraten / Quaterrylenes on organic and inorganic substratesFranke, Robert 12 July 2007 (has links) (PDF)
In der vorliegenden Arbeit wurde das hochgeordnete Wachstum von großen organischen Molekülen auf kristallinen Substraten mit Hilfe der Quaterrylenderivate QT, QTCDI und QTCMI untersucht. Um derartige Schichten herstellen und charakterisieren zu können, wurde eine Organische Molekularstrahlepitaxy (OMBE)-Anlage aufgebaut. Allerdings stellt OMBE bisher nur ein Standardverfahren für die Präparation hochgeordneter Schichten bestehend aus kleineren Molekülen dar. Im Zusammenhang mit größeren Molekülen ergibt sich die Frage, ob auf Grund der höheren Sublimationstemperatur diese unzersetzt aufgedampft werden können. Optische Spektroskopieexperimente haben gezeigt, daß dies im Fall von QT möglich ist. Andererseits beginnt die Zersetzung von QTCDI bereits unterhalb seiner Sublimationstemperatur, wobei als eines der Produkte QTCMI entsteht. Ein wesentliches Anliegen dieser Arbeit bestand darin, die Frage zu klären, inwieweit diese großen Aromate epitaktisch auf anorganischen als auch organischen Substraten aufwachsen. Organisch-anorganische Schichtsysteme wurden durch Aufdampfen der Quaterrylenderivate auf einkristalline, rekonstruierte Goldoberflächen erzeugt und anschließend mit LEED und STM charakterisiert. Trotz der eingeschränkten thermischen Stabilität von QTCDI konnten sowohl hochgeordnete QT als auch QTCDI Monolagen auf Au(111) hergestellt werden, die jeweils aus flachliegenden Molekülen bestehen. Im Falle von QTCDI konnte dieses Resultat durch eine Optimierung der Probenherstellung erreicht werden. Im Unterschied zur Anordnung der QT Moleküle in Reihen, bilden die QTCDI Moleküle eine dazu deutlich verschiedene brickwall Struktur, die durch die Bildung von Wasserstoffbrückenbindungen zwischen den Randgruppen der QTCDI Moleküle erklärt werden kann. In ähnlicher Weise zeigt sich der Einfluß der Substituenten auf die Anordnung der Moleküle in der Schicht an den gefunden QTCMI Strukturen. Im Unterschied zu QTCDI Monolagen auf Au(111), konnten keine reinen QTCMI Proben erzeugt werden. Die Ursache dafür ist, daß QTCMI zwar in der QTCDI Knudsenzelle angereichert werden kann, aber beide Moleküle ähnliche Verdampfungstemperaturen besitzen. Selbst die Präparation einer reinen QTCMI Probe nach vollständiger Umsetzung aller QTCDI Moleküle in der Knudsenzelle erscheint schwierig, da bei diesen Temperaturen auch die Zersetzung der QTCMI Moleküle stattfindet. Des weiteren wurden QT Monolagen auf Au(100) Substraten hergestellt. Die QT Moleküle besitzen auf dieser Oberfläche dieselbe Anordnung wie auf Au(111). Auf beiden Oberflächen wurden nur bestimmte Domänenwinkel beobachtet, die die Ausrichtung der Moleküldomänen im Bezug zum Substrat beschreiben. Da die rekonstruierten Au(100) Oberfläche typischerweise nur eine Phase je Terrasse ausbildet, entsteht eine ausgedehnte QT Domäne bereits durch eine einzige Adsorbatstruktur. Andererseits erfordert das homogene Wachstum einer ausgedehnten QT Domäne auf verschiedenen Rekonstruktionsdomänen der Au(111) Oberfläche die Existenz der drei beobachteten Adsorbatstrukturen, die sich durch unterschiedliche Domänenwinkel auszeichnen. Weiterhin wurden Anzeichen dafür gefunden, daß die rekonstruierten Au(111) und Au(100) Oberflächen durch die Adsorption von QT Molekülen verändert werden. Während dieser Effekt im Fall der Au(111) Oberfläche auch bei anderen organischen Molekülen beobachtet wurde, ist unseres Wissens nach in der Literatur eine Veränderung der Au(100) Rekonstruktion in Folge des Aufdampfens einer organischen Molekülschicht bisher nicht beschrieben worden. Darüber hinaus können alle beobachteten Adsorbatstrukturen der Quaterrylenderivate auf Au(111) und Au(100) im Rahmen des point-on-line Modells erklärt werden. Das Wachstum der zweiten Monolage QT auf Au(111) wurde als Beispiel für organisch-organische Homoepitaxy untersucht. Die Moleküle der zweiten QT Monolage bilden wiederum Reihen, die entlang der QT Reihen der ersten Monolage wachsen. Als unmittelbare Folge existiert nur eine mögliche Domänenorientierung im Bezug zur ersten Monolage QT. Im Unterschied zu den ausschließlich flachliegenden Molekülen der ersten Monolage QT wurden in der zweiten Monolage alternierend stehende und liegende Moleküle beobachtet. Die resultierende Struktur ähnelt dabei der QT Kristallstruktur. Diese Resultate zeigen, daß die Au(111) Oberfläche einen vergleichsweise starken Einfluß auf die Struktur der ersten QT Monolage hat, während sie sich deutlich weniger stark auf die Struktur der zweiten QT Monolage auswirkt. Einen weiteren Aspekt der vorliegenden Arbeit stellen organisch-organische Heterostrukturen bestehend aus QT-HBC Schichten auf Au(111) dar. Im Zusammenhang mit der Untersuchung dieser Schichten sollte geklärt werden, ob der kürzlich gefundene Epitaxytyp line-on-line das Wachstum organisch-organischer Heterostrukturen generell beschreiben kann. Im Gegensatz zu typischen STM Bildern von organisch-organischen Heterostrukturen aus der Literatur, konnten hier Bilder aufgezeichnet werden, in der beide Molekülsorten deutlich voneinander unterschieden werden können. Dabei wurde eine QT/HBC Heterostruktur gefunden, bei der flachliegende QT Moleküle Reihen bilden. Im Unterschied zu QT auf Au(111) sind diese Reihen nicht dicht aneinander gepackt. Diese Beobachtung deutet darauf hin, daß die QT Struktur durch ein energetisch günstiges Packen der QT Moleküle auf den HBC Molekülen bestimmt wird. Darüber hinaus wurden zwei weitere Adsorbatstrukturen mit deutlich verschiedenen Gitterparametern gefunden. Hochaufgelöste STM Bilder legen nahe, daß diese beiden Strukturen alternierend aus stehenden und liegenden Moleküle bestehen. Die Experimente liefern Anzeichen dafür, daß die jeweilige Anordnung der QT Moleküle in der Schicht von der Dicke der darunterliegen HBC Schicht bestimmt wird. Demnach liegen die QT Moleküle auf einer Monolage HBC infolge der stärkeren Wechselwirkung zur Au(111) Oberfläche flach, während die bei dickeren HBC Schichten schwächere Wechselwirkung mit dem Gold eine Struktur aus stehenden und liegenden Molekülen ähnlich der Kristallstruktur zur Folge hat.
|
2 |
Metal/Organic/Inorganic Semiconductor Heterostructures Characterized by Vibrational SpectroscopiesSalvan, Georgeta 27 August 2003 (has links) (PDF)
Im Rahmen dieser Arbeit werden zwei Perylen-Derivate als Zwischenschichten in Ag/organischen Schichten/GaAs(100)-Heterostrukturen eingesetzt, um den Einfluss von unterschiedlichen chemischen Endgruppen auf die chemischen und strukturellen Eigenschaften beider Grenzflächen, sowie auf die Morphologie, Struktur und Kristallinität von organischen Schichten zu charakterisieren. Die molekularen Schichten von 3,4,9,10-Perylentetracarbonsäure Dianhydrid (PTCDA) und Dimethyl-3,4,9,10-Perylentetracarbonsäure Diimid (DiMe-PTCDI) werden durch organische Molekularstrahldeposition (OMBD) im Ultrahochvakuum auf S-passivierten GaAs(100):2x1-Substraten hergestellt. Weiterhin wird der Einfluss des Substrats untersucht, indem PTCDA-Wachstum auf H-passiviertem Si(100):1x1 durchgeführt wird. Als Hauptcharakterisierungsmethode wird die Ramanspektroskopie eingesetzt. Diese ist eine nicht-destruktive Methode, die auch in situ Untersuchungen des Wachstumsprozesses ermöglicht. Die komplementäre Infrarotspektroskopie sowie die Rasterkraftmikroskopie, Rasterelektronenmikroskopie und Röntgenbeugung (XRD) werden zur Ergänzung des Verständnisses der Heterostruktureigenschaften verwendet. Die Empfindlichkeit von Raman- und Infrarot-Spektroskopien auf die chemisch unterschiedlichen Endgruppen wird durch experimentelle Untersuchungen an PTCDA- und DiMe-PTCDI-Kristallen, beziehungsweise dicken Schichten und mit Hilfe theoretischer Berechnungen nachgewiesen. So wird zum ersten Mal eine vollständige Zuordnung der Schwingunsfrequenzen zu den internen Schwingungsmoden von DiMe-PTCDI vorgeschlagen. Im niedrigen Frequenzbereich der Ramanspektren werden die externen molekularen Schwingungsmoden, oder molekularen Phononen, die eine Signatur der Kristallinität darstellen, beobachtet. Die Phononen von DiMe-PTCDI werden in dieser Arbeit zum ersten Mal in einem Ramanexperiment beobachtet. Mittels resonanter Ramanspektroskopie wird die Detektion von C-H-Deformationsmoden und C-C-Streckmoden sogar im Sub-Monolagenbereich molekularer Bedeckung auf Halbleiteroberflächen möglich. Anhand dieser Ramanspektren konnte die Art der Wechselwirkung zwischen Molekülen und passivierten Oberflächen näher charakterisiert werden. Zusätzliche Information bringen die GaAs LO- und Plasmon-gekoppelten LO- Phononen, deren Intensitätsverhältnis im Ramanspektrum die Bandverbiegung im GaAs-Substrat widerspiegelt. Die Kristallinität der hergestellten organischen Schichten mit Dicken größer als 2 nm wird durch Beobachtung der molekularen Phononen nachgewiesen. Als allgemeine Tendenz konnte bewiesen werden, dass mit steigender Substrattemperatur während des Wachstums größere Kristalldomänen entstehen. Weiterhin wird eine Methode vorgeschlagen, um den Anteil von zwei PTCDA- Kristallphasen mit ähnlichen Gitterparametern anhand der Raman- beziehungsweise XRD-Spektren zu bestimmen. Durch ihre sehr gute Ordnung können die DiMe-PTCDI- Schichten als Modellsystem dienen, um eine Methode zu entwickeln, die die Molekülorientierung im Bezug zum Substrat aus polarisationsabhängigen Raman- und Infrarotmessungen bestimmt. Bei der Metall-Bedampfung wird die Empfindlichkeit der Ramanstreuung an internen molekularen Schwingungsmoden von PTCDA und DiMe-PTCDI-Schichten durch oberflächenverstärkte Ramanstreuung (SERS) erhöht. Anhand der unterschiedlichen Signalverstärkungsmechanismen werden Informationen über die Ag/Molekül- Wechselwirkung und die Morphologie der Ag-Schichten abgeleitet.
|
3 |
Epitaxial nanolayers of large organic molecules: Quaterrylenes on organic and inorganic substratesFranke, Robert 20 June 2007 (has links)
In der vorliegenden Arbeit wurde das hochgeordnete Wachstum von großen organischen Molekülen auf kristallinen Substraten mit Hilfe der Quaterrylenderivate QT, QTCDI und QTCMI untersucht. Um derartige Schichten herstellen und charakterisieren zu können, wurde eine Organische Molekularstrahlepitaxy (OMBE)-Anlage aufgebaut. Allerdings stellt OMBE bisher nur ein Standardverfahren für die Präparation hochgeordneter Schichten bestehend aus kleineren Molekülen dar. Im Zusammenhang mit größeren Molekülen ergibt sich die Frage, ob auf Grund der höheren Sublimationstemperatur diese unzersetzt aufgedampft werden können. Optische Spektroskopieexperimente haben gezeigt, daß dies im Fall von QT möglich ist. Andererseits beginnt die Zersetzung von QTCDI bereits unterhalb seiner Sublimationstemperatur, wobei als eines der Produkte QTCMI entsteht. Ein wesentliches Anliegen dieser Arbeit bestand darin, die Frage zu klären, inwieweit diese großen Aromate epitaktisch auf anorganischen als auch organischen Substraten aufwachsen. Organisch-anorganische Schichtsysteme wurden durch Aufdampfen der Quaterrylenderivate auf einkristalline, rekonstruierte Goldoberflächen erzeugt und anschließend mit LEED und STM charakterisiert. Trotz der eingeschränkten thermischen Stabilität von QTCDI konnten sowohl hochgeordnete QT als auch QTCDI Monolagen auf Au(111) hergestellt werden, die jeweils aus flachliegenden Molekülen bestehen. Im Falle von QTCDI konnte dieses Resultat durch eine Optimierung der Probenherstellung erreicht werden. Im Unterschied zur Anordnung der QT Moleküle in Reihen, bilden die QTCDI Moleküle eine dazu deutlich verschiedene brickwall Struktur, die durch die Bildung von Wasserstoffbrückenbindungen zwischen den Randgruppen der QTCDI Moleküle erklärt werden kann. In ähnlicher Weise zeigt sich der Einfluß der Substituenten auf die Anordnung der Moleküle in der Schicht an den gefunden QTCMI Strukturen. Im Unterschied zu QTCDI Monolagen auf Au(111), konnten keine reinen QTCMI Proben erzeugt werden. Die Ursache dafür ist, daß QTCMI zwar in der QTCDI Knudsenzelle angereichert werden kann, aber beide Moleküle ähnliche Verdampfungstemperaturen besitzen. Selbst die Präparation einer reinen QTCMI Probe nach vollständiger Umsetzung aller QTCDI Moleküle in der Knudsenzelle erscheint schwierig, da bei diesen Temperaturen auch die Zersetzung der QTCMI Moleküle stattfindet. Des weiteren wurden QT Monolagen auf Au(100) Substraten hergestellt. Die QT Moleküle besitzen auf dieser Oberfläche dieselbe Anordnung wie auf Au(111). Auf beiden Oberflächen wurden nur bestimmte Domänenwinkel beobachtet, die die Ausrichtung der Moleküldomänen im Bezug zum Substrat beschreiben. Da die rekonstruierten Au(100) Oberfläche typischerweise nur eine Phase je Terrasse ausbildet, entsteht eine ausgedehnte QT Domäne bereits durch eine einzige Adsorbatstruktur. Andererseits erfordert das homogene Wachstum einer ausgedehnten QT Domäne auf verschiedenen Rekonstruktionsdomänen der Au(111) Oberfläche die Existenz der drei beobachteten Adsorbatstrukturen, die sich durch unterschiedliche Domänenwinkel auszeichnen. Weiterhin wurden Anzeichen dafür gefunden, daß die rekonstruierten Au(111) und Au(100) Oberflächen durch die Adsorption von QT Molekülen verändert werden. Während dieser Effekt im Fall der Au(111) Oberfläche auch bei anderen organischen Molekülen beobachtet wurde, ist unseres Wissens nach in der Literatur eine Veränderung der Au(100) Rekonstruktion in Folge des Aufdampfens einer organischen Molekülschicht bisher nicht beschrieben worden. Darüber hinaus können alle beobachteten Adsorbatstrukturen der Quaterrylenderivate auf Au(111) und Au(100) im Rahmen des point-on-line Modells erklärt werden. Das Wachstum der zweiten Monolage QT auf Au(111) wurde als Beispiel für organisch-organische Homoepitaxy untersucht. Die Moleküle der zweiten QT Monolage bilden wiederum Reihen, die entlang der QT Reihen der ersten Monolage wachsen. Als unmittelbare Folge existiert nur eine mögliche Domänenorientierung im Bezug zur ersten Monolage QT. Im Unterschied zu den ausschließlich flachliegenden Molekülen der ersten Monolage QT wurden in der zweiten Monolage alternierend stehende und liegende Moleküle beobachtet. Die resultierende Struktur ähnelt dabei der QT Kristallstruktur. Diese Resultate zeigen, daß die Au(111) Oberfläche einen vergleichsweise starken Einfluß auf die Struktur der ersten QT Monolage hat, während sie sich deutlich weniger stark auf die Struktur der zweiten QT Monolage auswirkt. Einen weiteren Aspekt der vorliegenden Arbeit stellen organisch-organische Heterostrukturen bestehend aus QT-HBC Schichten auf Au(111) dar. Im Zusammenhang mit der Untersuchung dieser Schichten sollte geklärt werden, ob der kürzlich gefundene Epitaxytyp line-on-line das Wachstum organisch-organischer Heterostrukturen generell beschreiben kann. Im Gegensatz zu typischen STM Bildern von organisch-organischen Heterostrukturen aus der Literatur, konnten hier Bilder aufgezeichnet werden, in der beide Molekülsorten deutlich voneinander unterschieden werden können. Dabei wurde eine QT/HBC Heterostruktur gefunden, bei der flachliegende QT Moleküle Reihen bilden. Im Unterschied zu QT auf Au(111) sind diese Reihen nicht dicht aneinander gepackt. Diese Beobachtung deutet darauf hin, daß die QT Struktur durch ein energetisch günstiges Packen der QT Moleküle auf den HBC Molekülen bestimmt wird. Darüber hinaus wurden zwei weitere Adsorbatstrukturen mit deutlich verschiedenen Gitterparametern gefunden. Hochaufgelöste STM Bilder legen nahe, daß diese beiden Strukturen alternierend aus stehenden und liegenden Moleküle bestehen. Die Experimente liefern Anzeichen dafür, daß die jeweilige Anordnung der QT Moleküle in der Schicht von der Dicke der darunterliegen HBC Schicht bestimmt wird. Demnach liegen die QT Moleküle auf einer Monolage HBC infolge der stärkeren Wechselwirkung zur Au(111) Oberfläche flach, während die bei dickeren HBC Schichten schwächere Wechselwirkung mit dem Gold eine Struktur aus stehenden und liegenden Molekülen ähnlich der Kristallstruktur zur Folge hat.
|
4 |
Electronic Properties and Chemistry of Metal / Organic Semiconductor/ S-GaAs(100) HeterostructuresGavrila, Gianina Nicoleta 13 January 2006 (has links) (PDF)
Im Rahmen dieser Arbeit werden drei Perylen-Derivate als Zwischenschichten in Metall/organische Schicht/S-GaAs(100)-Heterostrukturen eingesetzt. Das Ziel dieser Arbeit ist, den Einfluss von unterschiedlichen chemischen Endgruppen auf die elektronischen und chemischen Eigenschaften der Grenzflächen, sowie auf die molekulare Orientierung in den organischen Schichten nachzuweisen.
Die Moleküle 3,4,9,10-Perylentetracarbonsäure Dianhydrid (PTCDA), 3,4,9,10-PerylenTetraCarbonsäure DiImid (PTCDI) und Dimethyl-3,4,9,10-PerylenTetraCarbonsäure DiImid (DiMe-PTCDI) wurden durch organische Molekularstrahldeposition (OMBD) im Ultrahochvakuum auf Schwefel-passivierte GaAs(100):2x1-Substrate aufgedampft. Oberflächensensitive Charakterisierungsverfahren wie Photoemissionsspekroskopie (PES), Inverse Photoemissionsspektroskopie (IPES) und Nahkantenröntgenfeinstrukturmessungen (NEXAFS) wurden zur Charakterisierung eingesetzt. Theoretische Berechnungen mit Hilfe von Dichte-Funktional-Methoden wurden durchgeführt, um eine Zuordnung von verschiedenen Komponenten in Rumpfniveauspektren zu ermöglichen.
Die NEXAFS-Messungen ermöglichen eine genaue Bestimmung der Molekülorientierung in Bezug zum Substrat. So lässt sich nachweisen, dass eine kleine Änderung von chemischen Endgruppen z.B. bei DiMe-PTCDI verglichen mit PTCDI, eine dramatische Änderung der Molekülorientierung hervorruft.
Die Valenzbandspektren von DiMe-PTCDI zeigen eine energetische Dispersion von 0.2 eV, die auf eine -Orbital-Überlappung zurückzuführen ist und die Ausbildung von Valenzbändern belegt.
Die Energieniveauanpassung an der organische Schicht/S-GaAs-Grenzfläche, sowie die Transport-Bandlücke von PTCDI, DiMe-PTCDI und PTCDA wurden mit Hilfe von PES und IPES bestimmt.
Die elektronischen, chemischen und strukturellen Eigenschaften von Metall/Organische Schicht- Grenzflächen wurden mit Hilfe von Rumpfniveauspektroskopie und NEXAFS untersucht. Mg reagiert stark mit den Endgruppen von PTCDA und PTCDI, währenddessen die In-Atome an einem Ladungstransferprozess mit den Perylen-Kernen aller dreien Molekülen beteiligt sind, wobei der Betrag der transferierten Ladung maximal für den Fall von PTCDI wird. Während Mg sehr wenig in die organischen Schichten diffundiert, zeigt In sehr starke Eindiffusion in PTCDA-Schichten und schwache in PTCDI-Schichten.
|
5 |
Nonadiabatic quantum molecular dynamics with hopping. III. Photoinduced excitation and relaxation of organic moleculesFischer, Michael, Handt, Jan, Schmidt, Rüdiger 09 September 2014 (has links) (PDF)
Photoinduced excitation and relaxation of organic molecules (C2H4 and CH2NH+2) are investigated by means of nonadiabatic quantum molecular dynamics with hopping (NA-QMD-H), developed recently [Fischer, Handt, and Schmidt, paper I of this series, Phys. Rev. A 90, 012525 (2014)]. This method is first applied to molecules assumed to be initially ad hoc excited to an electronic surface. Special attention is drawn to elaborate the role of electron-nuclear correlations, i.e., of quantum effects in the nuclear dynamics. It is found that they are essential for a realistic description of the long-time behavior of the electronic relaxation process, but only of minor importance to portray the short-time scenario of the nuclear dynamics. Migration of a hydrogen atom, however, is identified as a quantum effect in the nuclear motion. Results obtained with explicit inclusion of an fs-laser field are presented as well. It is shown that the laser-induced excitation process generally leads to qualitatively different gross features of the relaxation dynamics, as compared to the field-free case. Nevertheless, the nuclear wave packet contains all subtleties of the cis-trans isomerization mechanism as observed without a laser field.
|
6 |
Metal/Organic/Inorganic Semiconductor Heterostructures Characterized by Vibrational SpectroscopiesSalvan, Georgeta 14 July 2003 (has links)
Im Rahmen dieser Arbeit werden zwei Perylen-Derivate als Zwischenschichten in Ag/organischen Schichten/GaAs(100)-Heterostrukturen eingesetzt, um den Einfluss von unterschiedlichen chemischen Endgruppen auf die chemischen und strukturellen Eigenschaften beider Grenzflächen, sowie auf die Morphologie, Struktur und Kristallinität von organischen Schichten zu charakterisieren. Die molekularen Schichten von 3,4,9,10-Perylentetracarbonsäure Dianhydrid (PTCDA) und Dimethyl-3,4,9,10-Perylentetracarbonsäure Diimid (DiMe-PTCDI) werden durch organische Molekularstrahldeposition (OMBD) im Ultrahochvakuum auf S-passivierten GaAs(100):2x1-Substraten hergestellt. Weiterhin wird der Einfluss des Substrats untersucht, indem PTCDA-Wachstum auf H-passiviertem Si(100):1x1 durchgeführt wird. Als Hauptcharakterisierungsmethode wird die Ramanspektroskopie eingesetzt. Diese ist eine nicht-destruktive Methode, die auch in situ Untersuchungen des Wachstumsprozesses ermöglicht. Die komplementäre Infrarotspektroskopie sowie die Rasterkraftmikroskopie, Rasterelektronenmikroskopie und Röntgenbeugung (XRD) werden zur Ergänzung des Verständnisses der Heterostruktureigenschaften verwendet. Die Empfindlichkeit von Raman- und Infrarot-Spektroskopien auf die chemisch unterschiedlichen Endgruppen wird durch experimentelle Untersuchungen an PTCDA- und DiMe-PTCDI-Kristallen, beziehungsweise dicken Schichten und mit Hilfe theoretischer Berechnungen nachgewiesen. So wird zum ersten Mal eine vollständige Zuordnung der Schwingunsfrequenzen zu den internen Schwingungsmoden von DiMe-PTCDI vorgeschlagen. Im niedrigen Frequenzbereich der Ramanspektren werden die externen molekularen Schwingungsmoden, oder molekularen Phononen, die eine Signatur der Kristallinität darstellen, beobachtet. Die Phononen von DiMe-PTCDI werden in dieser Arbeit zum ersten Mal in einem Ramanexperiment beobachtet. Mittels resonanter Ramanspektroskopie wird die Detektion von C-H-Deformationsmoden und C-C-Streckmoden sogar im Sub-Monolagenbereich molekularer Bedeckung auf Halbleiteroberflächen möglich. Anhand dieser Ramanspektren konnte die Art der Wechselwirkung zwischen Molekülen und passivierten Oberflächen näher charakterisiert werden. Zusätzliche Information bringen die GaAs LO- und Plasmon-gekoppelten LO- Phononen, deren Intensitätsverhältnis im Ramanspektrum die Bandverbiegung im GaAs-Substrat widerspiegelt. Die Kristallinität der hergestellten organischen Schichten mit Dicken größer als 2 nm wird durch Beobachtung der molekularen Phononen nachgewiesen. Als allgemeine Tendenz konnte bewiesen werden, dass mit steigender Substrattemperatur während des Wachstums größere Kristalldomänen entstehen. Weiterhin wird eine Methode vorgeschlagen, um den Anteil von zwei PTCDA- Kristallphasen mit ähnlichen Gitterparametern anhand der Raman- beziehungsweise XRD-Spektren zu bestimmen. Durch ihre sehr gute Ordnung können die DiMe-PTCDI- Schichten als Modellsystem dienen, um eine Methode zu entwickeln, die die Molekülorientierung im Bezug zum Substrat aus polarisationsabhängigen Raman- und Infrarotmessungen bestimmt. Bei der Metall-Bedampfung wird die Empfindlichkeit der Ramanstreuung an internen molekularen Schwingungsmoden von PTCDA und DiMe-PTCDI-Schichten durch oberflächenverstärkte Ramanstreuung (SERS) erhöht. Anhand der unterschiedlichen Signalverstärkungsmechanismen werden Informationen über die Ag/Molekül- Wechselwirkung und die Morphologie der Ag-Schichten abgeleitet.
|
7 |
Electronic Properties and Chemistry of Metal / Organic Semiconductor/ S-GaAs(100) HeterostructuresGavrila, Gianina Nicoleta 21 October 2005 (has links)
Im Rahmen dieser Arbeit werden drei Perylen-Derivate als Zwischenschichten in Metall/organische Schicht/S-GaAs(100)-Heterostrukturen eingesetzt. Das Ziel dieser Arbeit ist, den Einfluss von unterschiedlichen chemischen Endgruppen auf die elektronischen und chemischen Eigenschaften der Grenzflächen, sowie auf die molekulare Orientierung in den organischen Schichten nachzuweisen.
Die Moleküle 3,4,9,10-Perylentetracarbonsäure Dianhydrid (PTCDA), 3,4,9,10-PerylenTetraCarbonsäure DiImid (PTCDI) und Dimethyl-3,4,9,10-PerylenTetraCarbonsäure DiImid (DiMe-PTCDI) wurden durch organische Molekularstrahldeposition (OMBD) im Ultrahochvakuum auf Schwefel-passivierte GaAs(100):2x1-Substrate aufgedampft. Oberflächensensitive Charakterisierungsverfahren wie Photoemissionsspekroskopie (PES), Inverse Photoemissionsspektroskopie (IPES) und Nahkantenröntgenfeinstrukturmessungen (NEXAFS) wurden zur Charakterisierung eingesetzt. Theoretische Berechnungen mit Hilfe von Dichte-Funktional-Methoden wurden durchgeführt, um eine Zuordnung von verschiedenen Komponenten in Rumpfniveauspektren zu ermöglichen.
Die NEXAFS-Messungen ermöglichen eine genaue Bestimmung der Molekülorientierung in Bezug zum Substrat. So lässt sich nachweisen, dass eine kleine Änderung von chemischen Endgruppen z.B. bei DiMe-PTCDI verglichen mit PTCDI, eine dramatische Änderung der Molekülorientierung hervorruft.
Die Valenzbandspektren von DiMe-PTCDI zeigen eine energetische Dispersion von 0.2 eV, die auf eine -Orbital-Überlappung zurückzuführen ist und die Ausbildung von Valenzbändern belegt.
Die Energieniveauanpassung an der organische Schicht/S-GaAs-Grenzfläche, sowie die Transport-Bandlücke von PTCDI, DiMe-PTCDI und PTCDA wurden mit Hilfe von PES und IPES bestimmt.
Die elektronischen, chemischen und strukturellen Eigenschaften von Metall/Organische Schicht- Grenzflächen wurden mit Hilfe von Rumpfniveauspektroskopie und NEXAFS untersucht. Mg reagiert stark mit den Endgruppen von PTCDA und PTCDI, währenddessen die In-Atome an einem Ladungstransferprozess mit den Perylen-Kernen aller dreien Molekülen beteiligt sind, wobei der Betrag der transferierten Ladung maximal für den Fall von PTCDI wird. Während Mg sehr wenig in die organischen Schichten diffundiert, zeigt In sehr starke Eindiffusion in PTCDA-Schichten und schwache in PTCDI-Schichten.
|
8 |
Nonadiabatic quantum molecular dynamics with hopping. III. Photoinduced excitation and relaxation of organic moleculesFischer, Michael, Handt, Jan, Schmidt, Rüdiger January 2014 (has links)
Photoinduced excitation and relaxation of organic molecules (C2H4 and CH2NH+2) are investigated by means of nonadiabatic quantum molecular dynamics with hopping (NA-QMD-H), developed recently [Fischer, Handt, and Schmidt, paper I of this series, Phys. Rev. A 90, 012525 (2014)]. This method is first applied to molecules assumed to be initially ad hoc excited to an electronic surface. Special attention is drawn to elaborate the role of electron-nuclear correlations, i.e., of quantum effects in the nuclear dynamics. It is found that they are essential for a realistic description of the long-time behavior of the electronic relaxation process, but only of minor importance to portray the short-time scenario of the nuclear dynamics. Migration of a hydrogen atom, however, is identified as a quantum effect in the nuclear motion. Results obtained with explicit inclusion of an fs-laser field are presented as well. It is shown that the laser-induced excitation process generally leads to qualitatively different gross features of the relaxation dynamics, as compared to the field-free case. Nevertheless, the nuclear wave packet contains all subtleties of the cis-trans isomerization mechanism as observed without a laser field.
|
9 |
Spectroscopic Studies of the Interfaces Between Molecules and Ferromagnetic SubstratesGuo, Jing 14 December 2018 (has links)
Die große Vielfalt an organischen Komplexen, kombiniert mit der Möglichkeit, die chemische Reaktivität und den elektronischen Grundzustand unterschiedlicher Komplexe innerhalb derselben Molekülfamilie abzustimmen, machen solche Materialien für elektronische Anwendungen attraktiv. Auf Grund ihrer langen Spin-Lebensdauer sind Moleküle auch für Spintronik-Anwendungen sehr geeignet.
In dieser Arbeit werden die Grenzflächen zwischen organischen Halbleitern und Metallen sowie zwei organischen Halbleitern durch spektroskopische Techniken untersucht. Das erste Kapitel beinhaltet eine allgemeine Einführung zu organischen Halbleitern und Eigenschaften von Grenzflächen. Im experimentellen Teil werden die untersuchten Moleküle und verwendeten Messmethoden detailliert vorgestellt. Der dritte Teil dieser Arbeit zeigt die Auswirkung verschiedener Substrate (Co und Ni) oder Molekülkombinationen (CoPc und FePc) auf die Wechselwirkungs- und Ladungsübertragungskanäle. In dem nachfolgenden Teil werden elektronische Zustände und Wechselwirkungen an Organik-Organik Grenzflächen am Beispiel von VOPc/F16CuPc und F16CoPc/rubren diskutiert. Der letzte Teil dieser Arbeit zeigt, wie die Eigenschaften der Substrate und die Modifikation der Moleküle die molekulare Orientierung beeinflussen können.
|
10 |
From Molecular Parameters to Electronic Properties of Organic Thin Films: A Photoelectron Spectroscopy StudySchwarze, Martin 28 March 2019 (has links)
The field of organic semiconductors considerably gained research interest due to promising applications in flexible, large-area, lightweight and semitransparent electronic devices, such as light-emitting diodes, solar cells, or transistors. The working mechanism of such devices depends on the combination of different neat or blended organic films, whose physical properties substantially differ from those of inorganic semiconductors. Weak intermolecular electronic coupling and large energetic disorder result in a thermally activated charge carrier hopping between localized electronic states. Therefore, many processes in organic devices are determined by properties of single molecules. The major goal of this thesis is to disclose relationships between electronic properties of organic thin films and molecular parameters, helping to provide specific design rules for new molecules.
In the first part of this thesis, the impact of molecular quadrupole moments on the transport energies of charge carriers is investigated by photoelectron spectroscopy. The results reveal for a variety of planar small molecules that charge-quadrupole interactions along the pi-pi-stacking geometry induce large energy changes with molecular orientation at surfaces and interfaces of crystalline films. Furthermore, these electrostatic interactions enable a continuous tuning of energy levels in crystalline intermixed blends by more than 1 eV. In blends exhibiting separated phases, quadrupole moments induce electrostatic gradients from the interface to the bulk phase. These two effects are exploited in organic solar cells consisting of a ternary blend of two intermixed donors blended with one acceptor. By changing the mixing ratio of the two donors, the open-circuit voltage can be continuously tuned. Additionally, the dissociation barrier of electron-hole pairs at the interface can be varied, reflecting in a change in photocurrent.
In the second part, molecular n-doping is investigated, facing the particular issue of air sensitivity. The analysis of two air stable precursor molecules of n-dopants reveals very good doping properties after their thermal evaporation, partly even better than for a reference air sensitive dopant. For high doping concentrations, temperature-dependent conductivity measurements show that the thermal activation energy of many compounds can be described by an empirical function of two molecular parameters, the relaxation energy of matrix anions and the Coulomb binding energy of integer charge transfer complexes (ICTCs) between matrix anions and dopant cations. The investigation of the density of states indicates that charge transport at high doping concentrations predominantly occurs by a rearrangement between different ICTC configurations and is limited by their energetic disorder, which can be reduced substantially by adding electron withdrawing side groups to the matrix molecules. The exposure of several n-doped semiconductors to air reveals that the air stability increases with larger ionization energies of ICTCs. This effect is attributed to an universal trap introduced upon air exposure. Its energy is estimated to be 3.9 eV, setting a general limit for air stable n-doping. / Organische Halbleiter bieten vielversprechende Anwendungsmöglichkeiten in ultraleichten, flexiblen, großflächigen und semitransparenten elektronischen Bauteilen wie beispielsweise in Leuchtdioden, Solarzellen oder Transistoren. Die Funktionsweise solcher Bauteile basiert auf der Kombination verschiedener organischer Moleküle in dünnen Schichten, deren physikalische Eigenschaften sich stark von herkömmlichen anorganischen Halbleitern unterscheiden. Die schwache elektronische Kopplung zwischen einzelnen Molekülen und die große energetische Unordnung in organischen Halbleitern bewirken einen temperaturaktivierten Transport von Ladungsträgern zwischen lokalisierten elektronischen Zuständen. Daher werden viele Prozesse in organischen Halbleiterbauelementen von molekularen Eigenschaften bestimmt. Das Hauptziel dieser Dissertation ist es, verschiedene elektronische Eigenschaften dünner organischer Filme mit molekularen Parametern in Verbindung zu bringen, was als Grundlage für die gezielte Entwicklung neuer Moleküle dienen soll.
Im ersten Teil dieser Arbeit wird mittels Photoelektronenspektroskopie der Einfluss molekularer Quadrupolmomente auf die Transportenergien von Ladungsträgern untersucht. Für eine große Anzahl verschiedener planarer Moleküle zeigt sich, dass die Wechselwirkung von Ladungen mit Quadrupolmomenten entlang der pi-pi-Stapelrichtung große Veränderungen der Energieniveaus an der Oberfläche und der Grenzfläche von kristallinen Filmen bewirkt, beispielsweise wenn sich die Molekülorientierung ändert. Dieser elektrostatische Effekt ermöglicht es, die Energieniveaus in einer homogen durchmischten Schicht zweier Molekülarten kontinuierlich über eine Größenordnung von mehr als 1 eV durchzustimmen. In Mischungen mit einer Phasentrennung können molekulare Quadrupolmomente einen elektrostatischen Gradienten an der Grenzfläche zwischen den Phasen ausbilden. Diese beiden Effekte werden in Solarzellen ausgenutzt, die aus einer Mischung von zwei Donatormolekülen und einem Akzeptormolekül bestehen. Durch Variation des Mischverhältnisses der zwei Donatoren lässt sich die Leerlaufspannung kontunierlich anpassen. Zusätzlich lässt sich die Energiebarriere für die Ladungsträgertrennung an der Grenzfläche reduzieren, was zu einem höheren Photostrom führt.
Im zweiten Teil wird molekulare n-Dotierung untersucht, bei der das spezielle Problem der Luftsensitivität berücksichtigt werden muss. Zwei luftstabile Ausgangsmoleküle von n-Dotanden weisen nach ihrer thermischen Verdampfung sehr gute Dotiereigenschaften auf, welche für ein Molekül sogar besser als bei entsprechenden luftsensitiven Referenzdotanden sind. Temperaturabhängige Leitfähigkeitsmessungen zeigen, dass die thermische Aktivierungsenergie bei hohen Dotierkonzentrationen durch eine empirische Funktion von zwei molekularen Parametern beschrieben werden kann, welche die Relaxationsenergie von Anionen des Matrixmoleküls und die Coulombbindungsenergie des Ionenpaars aus Matrix- und Dotandenmolekül sind. Die Untersuchung der Zustandsdichte dieser hochdotierten Halbleiter deutet darauf hin, dass sich der Ladungstransport durch eine Umbesetzung dieser Ionenpaare beschreiben lässt. Der Transport ist dabei durch die energetische Unordnung der Ionenpaare limitiert, welche sich allerdings durch das Hinzufügen von elektronenziehenden Seitengruppen an die Matrixmoleküle deutlich reduzieren lässt. Der Kontakt verschiedener n-dotierter Halbleiter mit Luft zeigt, dass sich die Luftstabilität dieser mit größerer Ionisationsenergie der Anionen des Matrixmaterials verbessert. Diese Beobachtung wird dadurch erklärt, dass durch den Kontakt mit Luft ein universeller Fallenzustand mit der Energie von 3.9 eV entsteht. Dieser setzt eine allgemeine Grenze für luftstabile n-Dotierung.
|
Page generated in 0.1173 seconds