• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 303
  • 11
  • Tagged with
  • 314
  • 314
  • 310
  • 308
  • 50
  • 41
  • 34
  • 27
  • 26
  • 23
  • 23
  • 23
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Synthesis and Photoinduced Electron Transfer of Donor-Sensitizer-Acceptor Systems

Xu, Yunhua January 2005 (has links)
Artificial systems involving water oxidation and solar cells are promising ways for the conversion of solar energy into fuels and electricity. These systems usually consist of a photosensitizer, an electron donor and / or an electron acceptor. This thesis deals with the synthesis and photoinduced electron transfer of several donor-sensitizer-acceptor supramolecular systems. The first part of this thesis describes the synthesis and properties of two novel dinuclear ruthenium complexes as electron donors to mimic the donor side reaction of Photosystem II. These two Ru2 complexes were then covalently linked to ruthenium trisbipyridine and the properties of the resulting trinuclear complexes were studied by cyclic voltammetry and transient absorption spectroscopy. The second part presents the synthesis and photoinduced electron transfer of covalently linked donor-sensitizer supramolecular systems in the presence of TiO2 as electron acceptors. Electron donors are tyrosine, phenol and their derivatives, and dinuclear ruthenium complexes. Intramolecular electron transfer from the donor to the oxidized sensitizer was observed by transient absorption spectroscopy after light excitation of the Ru(bpy)32+ moiety. The potential applications of Ru2-based electron donors in artificial systems for water oxidation and solar cells are discussed. In the final part, the photoinduced interfacial electron transfer in the systems based on carotenoids and TiO2 is studied. Carotenoids are shown to act as both sensitizers and electron donors, which could be used in artificial systems to mimic the electron transfer chain in natural photosynthesis.
222

Towards Rational Design of Asymmetric Catalyst for Organometallic and Organocatalytic Reactions

Hartikka, Antti January 2007 (has links)
This thesis deals with synthetically modified chiral molecules and their application in asymmetric catalysis. The first part of the thesis describes the use of commercially available chiral diamine ligands in the iridium catalyzed transfer hydrogenation of aromatic ketones. The chiral diamine ligands were mixed with an appropriate transition-metal complex, which after addition of suitable base provided a chiral transition metal complex capable of reducing a range of different aromatic ketones in high yields and enantioselectivities. The developed methodology constitutes a cost effective and readily available procedure for transfer hydrogenation reactions. The following chapters in the thesis are completely devoted to rational design of small organic molecules acting as catalyst in various organocatalytic transformations. Organocatalytic methodology, represent a new and complementary approach to asymmetric organic synthesis, as compared to e.g. transition metal based methodology. Advantages of this methodology typically include mild and less stringent reaction conditions. This, in combination with the lack of toxic transition metal by-products, makes the process more environmentally benign; the organocatalytic methodology, therefore represent a promising approach towards implementation of green chemistry in organic synthesis. Despite this promise, typical drawbacks of the current methodology are long reaction times and the need for high catalyst loadings. Thus, a large demand exists for enhancing reactivity and increasing selectivity in organocatalytic reactions. The present thesis describes several efforts where we have tried to rationally design improved catalysts for various enantioselective organocata-lytic reactions. First, a structurally modified L-proline, incorporating a 1H-tetrazolic acid, was synthesized and evaluated in the direct asymmetric organocatalytic aldol reaction. As shown in Paper II, the catalyst displayed very high reactivity and subsequent studies were initiated in order to rationalize the reactivity enhancement (Paper III). Delightfully, the design principle of a 1H-tetrazolic acid as replacement for a carboxylic acid has since been widely used in the community, including our own efforts in organocatalytic asymmetric cyclopropanations (Paper V)and Diels-Alder reactions (Paper VII). Novel catalysts, including other functionalizations, were also designed for organocatalytic asymmetric addition of nitroalkanes to α,β-unsaturated aldehydes (Paper IV) and for cyclopropanations (Paper VI).
223

Lowcoordinated Silicon and Hypercoordinated Carbon : Structure and Stability of Silicon Analogs of Alkenes and Carbon Analogs of Silicates

Eklöf, Anders M. January 2008 (has links)
Quantum chemical studies on lowcoordinated group 14-16 compounds have been performed. This thesis focuses particularly on silenes influenced by reverse Siδ-=Cδ+ bond polarization. Hypercoordinated carbon compounds are also studied. The geometries from calculations with several common computationally inexpensive methods have been tested against high level CCSD/cc-pVTZ geometries for a series of substituted silenes. Hybrid HF/DFT methods performed best among the inexpensive methods tested for silenes. Heavy alkenes strongly influenced by reverse polarization are found to have less exothermic dimerization energies for both head-to-head and head-to-tail dimerizations, and to have higher activation energies for water addition than naturally polarized heavy alkenes. We also investigated solvated lithium, magnesium and potassium silenolates and found that lithium and magnesium ions coordinate preferably to O, giving their SiC bond some double bond character. Reverse polarized 2-siloxy-, 2-thiosiloxy-, and 2-(N-sila-N-methyl)-silenes could according to calculations be formed thermolytically from the corresponding tetrasilanes as transient species. It was, however, found that silenes highly influenced by π-conjugative reverse polarization have low barriers for the back-reaction, and thus these silenes are more difficult to form as stable species than naturally polarized silenes. It is also found that conjugated 1-siladienes, formed by electrocyclic ring-opening of 1-silacyclobut-2-enes, which are highly influenced by π-conjugative reverse polarization, have higher barriers for electrocyclization back to starting material than naturally polarized 1-siladienes. It is found that CHe54+, CHe64+, CNe54+, and CNe64+ are the closest carbon analogs of SiH5-, SiH62-, SiF5- and SiF62-, respectively. However, due to their exothermic dissociation reaction, these very high-lying local minima will be impossible to reach experimentally.
224

Asymmetric Hydrogenations of Imines, Vinyl Fluorides, Enol Phosphinates and Other Alkenes Using N,P-Ligated Iridium Complexes

Diesen, Jarle Sidney January 2008 (has links)
The research described in this thesis is directed toward the efficient, enantioselective synthesis of chiral products that have useful functionality. This goal was pursued through catalytic asymmetric hydrogenation, a reaction class that selectively introduces one or two stereocenters into a molecule in an atom-efficient step. This reaction uses a small amount (often <1 mol%) of a chiral catalyst to impart stereoselectivity to the product formed. Though catalytic asymmetric hydrogenation is not a new reaction type, there remain many substrate classes for which it is ineffective. The present thesis describes efforts to extend the reaction to some of these substrates classes. Some of the products synthesized in these studies may eventually find use as building blocks for the production of chiral pharmaceuticals, agrochemicals, or flavouring or colouring agents. However, the primary and immediate aim of this thesis was to develop and demonstrate new catalysts that are rapid and effective in the asymmetric hydrogenation of a broad range of compounds. Paper I describes the design and construction of two new, related chiral iridium compounds that are catalysts for asymmetric hydrogenation. They each contain an N,P-donating phosphinooxazoline ligand that is held together by a rigid bicyclic unit. One of these iridium compounds catalyzed the asymmetric hydrogenation of acyclic aryl imines, often with very good enantioselectivities. This is particularly notable because acyclic imines are difficult to reduce with useful enantioselectivity. The second catalyst was useful for the asymmetric hydrogenation of two aryl olefins. In Paper II, the class of catalysts introduced into Paper I is expanded to include many more related compounds, and these are also applied to the asymmetric hydrogenation of prochiral imines and olefins. By studying a range of related catalysts that differ in a single attribute, we were able to probe how different parts of the catalyst affect the yield and selectivity of the hydrogenation reactions. Whereas iridium catalysts had been applied to the asymmetric hydrogenation of imines and largely unfunctionalized olefins prior to this work (with varied degrees of success), they had not been used to reduce fluoroolefins. Their hydrogenation, which is discussed in Paper III, was complicated by concomitant defluorination to yield non-halogenated alkanes. To combat this problem, several iridium-based hydrogenation catalysts were applied to the reaction. Two catalysts stood out for their ability to produce chiral fluoroalkanes in good enantioselectivity while minimizing the defluorination reaction, and one of these bore a phosphinooxazoline ligand of the type described in Papers I and II. Enol phosphinates are another class of olefins that had not previously been subjected to iridium-catalyzed asymmetric hydrogenation. They do, however, constitute an attractive substrate class, because the product chiral alkyl phosphinates can be transformed into chiral alcohols or chiral phosphines with no erosion of enantiopurity. Iridium complexes of the phosphinooxazoline ligands described in Papers I and II were extremely effective catalysts for the asymmetric hydrogenation of enol phosphinates. They produced alkyl phosphinates from di- and trisubstituted enol phosphinate, β-ketoester-derived enol phosphinates, and even purely alkyl-substituted enol phopshinates, in very high yields and enantioselectivities.
225

Organic and organometallic compounds for nonlinear absorption of light

Lind, Per January 2007 (has links)
The demand for protection of eyes and various types of optical sensors from laser-beam pulses has resulted in the search for optical limiting devices that have the property of being transparent at low intensity of light (normal light), but non-transparent towards high intensity (laser) light. This type of protection may be obtained by using an organic material that displays nonlinear optical (NLO) properties. Examples of NLO effects that can be used for optical limiting are reverse saturable absorption (RSA), two-photon absorption (TPA) and nonlinear refraction. The advantage of using compounds that show such NLO effects is that they can have very fast response and are self-activating, that is, there is no need for externally controlled switching to obtain optical limiting. In this work, several dialkynyl substituted thiophenes and some thiophenyl-alkynyl-platinum(II)-complexes were synthesized and tested for nonlinear absorption of light. A palladium-copper mediated coupling (Sonogashira coupling) was utilized for all reactions between terminal alkynes and aryl halides. Molecular orbital calculations were used in order to screen for suitable properties, such as the second hyperpolarizability, in compounds of interest. A quantitative structure-activity relationship (QSPR) study using a PLS approach were performed in order to identify important molecular electronic variables for optical limiting of organic compounds.
226

Multivariate processing and modelling of hyphenated metabolite data

Jonsson, Pär January 2005 (has links)
One trend in the ‘omics’ sciences is the generation of increasing amounts of data, describing complex biological samples. To cope with this and facilitate progress towards reliable diagnostic tools, it is crucial to develop methods for extracting representative and predictive information. In global metabolite analysis (metabolomics and metabonomics) NMR, GC/MS and LC/MS are the main platforms for data generation. Multivariate projection methods (e.g. PCA, PLS and O-PLS) have been recognized as efficient tools for data analysis within subjects such as biology and chemistry due to their ability to provide interpretable models based on many, correlated variables. In global metabolite analysis, these methods have been successfully applied in areas such as toxicology, disease diagnosis and plant functional genomics. This thesis describes the development of processing methods for the unbiased extraction of representative and predictive information from metabolic GC/MS and LC/MS data characterizing biofluids, e.g. plant extracts, urine and blood plasma. In order to allow the multivariate projections to detect and highlight differences between samples, one requirement of the processing methods is that they must extract a common set of descriptors from all samples and still retain the metabolically relevant information in the data. In Papers I and II this was done by applying a hierarchical multivariate compression approach to both GC/MS and LC/MS data. In the study described in Paper III a hierarchical multivariate curve resolution strategy (H-MCR) was developed for simultaneously resolving multiple GC/MS samples into pure profiles. In Paper IV the H-MCR method was applied to a drug toxicity study in rats, where the method’s potential for biomarker detection and identification was exemplified. Finally, the H-MCR method was extended, as described in Paper V, allowing independent samples to be processed and predicted using a model based on an existing set of representative samples. The fact that these processing methods proved to be valid for predicting the properties of new independent samples indicates that it is now possible for global metabolite analysis to be extended beyond isolated studies. In addition, the results facilitate high through-put analysis, because predicting the nature of samples is rapid compared to the actual processing. In summary this research highlights the possibilities for using global metabolite analysis in diagnosis.
227

Chemical Vapour Deposition of Undoped and Oxygen Doped Copper (I) Nitride

Fallberg, Anna January 2010 (has links)
In science and technology there is a steadily increased demand of new materials and new materials production processes since they create new application areas as well as improved production technology and economy. This thesis includes development and studies of a chemical vapour deposition (CVD) process for growth of thin films of the metastable material copper nitride, Cu3N, which is a semiconductor and decomposes at around 300 oC. The combination of these properties opens for a variety of applications ranging from solar cells to sensor and information technology. The CVD process developed is based on a metal-organic compound copper hexafluoroacetylacetonate, Cu(hfac)2 , ammonia and water and was working at about 300 oC and  5 Torr. It was found that a small amount of water in the vapour increased the growth rate considerably and that the phase content, film texture, chemical composition and morphology were strongly dependent on the deposition conditions. In-situ oxygen doping during the CVD of Cu3N to an amount of 9 atomic % could also be accomplished by increasing the water concentration in the vapour. Oxygen doping increases the band gap of the material as well as the electrical resistivity and changes the stability. The crystal structure of Cu3N is very open and contains several sites which can be used for doping. Different spectroscopic techniques like X-ray photoelectron spectroscopy, Raman spectroscopy and near edge X-ray absorption fine structure spectroscopy were used to identify the oxygen doping site(s) in Cu3N. Besides the properties, the oxygen doping also affected the morphology and texture of the films. By combining thin layers of different materials several properties can be optimized at the same time. It has been demonstrated in this thesis that multilayers, composed of alternating Cu3N and Cu2O layers, i.e. a metastable and a stable material, could be grown by CVD technique. However, the stacking sequence affected the texture, morphology and chemical composition. The interfaces between the different layers were sharp and no signs of decomposition of the initially deposited metastable Cu3N layer could be detected.
228

Organic Heavy Group 14 Element Compounds : A Study of Their Chemical Bonding Properties Directed Towards Applications as Molecular Wires and in Synthesis

Tibbelin, Julius January 2010 (has links)
The research described herein includes synthesis, spectroscopy, and quantum chemical calculations with focus on the characteristic properties of compounds with bonds between carbon and the heavier Group 14 elements. The chapters based on the first four papers concern σ- and σ/π-conjugated compounds, although the focus of the first paper is on ring strain of bicyclo[1.1.1]pentanes with C, Si, Ge or Sn at the bridgeheads. The relationship between calculated homodesmotic ring strain energies and through-space distances between the bridgehead atoms was evaluated, and it was found that replacing one of the methylene bridges with phospha-methyl gave both low strain and short through-space distance. Two kinds of σ/π-interacting systems were analysed with the difference that the σ- and π-bonded segments were either allowed to rotate freely relative each other or frozen into a conformer with maximal σ/π-interaction. The freely rotating systems are star-shaped oligothiophenes linked by heavy alkane segments. Density functional theory (DFT) calculations of hole reorganization energies support the measured hole mobilites. In summary, longer central oligosilane linkages, when compared to shorter, facilitate intermolecular hole-transfer between oligothiophene units. In 1,4-disilacyclohexa-2,5-dienes, the strength of the π- and pseudo-π interaction depends on the substituents at Si. Vapour phase UV absorption spectroscopy of 2,3,5,6-tetraethyl-1,1,4,4-tetrakis(trimethylsilyl)-1,4-disilacyclohexa-2,5-diene reveals a strong absorption at 273 nm (4.50 eV). Time-dependent DFT calculations further indicate that octastannylated 1,4-disilacyclohexa-2,5-diene has is lowest excited state at 384 nm (3.23 eV). The electronic, geometric and optical properties of substituted 1,4-disilacyclohexa-2,5-dienes were compared with those of the correspondingly substituted siloles. It was found that the lowest excitations of siloles are less tunable than those of 1,4-disilacyclohexa-2,5-dienes. The final section concerns strongly reverse-polarised 2-amino-2-siloxysilenes formed thermally from carbamylpolysilanes, and their lack of reaction with alcohols. Instead, the carbamylsilane reacts with alcohols giving silyl ethers, leading to a new benign route for alcohol protection.
229

Efficient Synthesis and Analysis of Chiral Cyanohydrins

Lundgren, Stina January 2007 (has links)
This thesis deals with the development of new methods for efficient synthesis and analysis in asymmetric catalysis. It focuses on the preparation of chiral cyanohydrins by enantioselective addition of cyanide to prochiral aldehydes. The initial part of the thesis describes the development of a dual Lewis acid– Lewis base activation system for efficient synthesis of chiral O-acylated and Ocarbonylated cyanohydrins. This system was used for the preparation of a variety of cyanohydrins in high isolated yields and with up to 96% ee. Activation of the cyanide by nucleophilic attack of the Lewis base at the carbonyl carbon atom was supported experimentally. Secondly, convenient procedures for the synthesis of polymer-bound chiral YbCl3-pybox and Ti-salen complexes are described. The polymeric complexes were employed in cyanation of benzaldehyde. A T-shaped microreactor was used for screening of reaction conditions for the enantioselective cyanation of benzaldehyde using trimethylsilyl cyanide and acetyl cyanide as cyanide sources. A microreactor charged with the polymeric Tisalen complex was used for enantioselective cyanation of benzaldehyde. Finally, an enzymatic method for high throughput analysis of ee and conversion of products from chiral Lewis acid–Lewis base-catalysed additions of α- ketonitriles to prochiral aldehydes was developed. The method could be used for the analysis of a variety of O-acylated cyanohydrins. Microreactor technology was successfully combined with high throughput analysis for efficient catalyst optimisation. / QC 20100809
230

Synthesis of Carbohydrate Mimics and Development of a Carbohydrate Epimerisation Method

Ramstadius, Clinton January 2010 (has links)
In this thesis the synthesis of several hydrolytically stable carbohydrate mimics with the potential to function as glycosidase or lectin inhibitors are described. This work is presented in Chapters 2-5. Chapters 2 and 3 describe synthetic efforts for producing carbasugars, and include the first synthesis of 1,2-bis-epi-valienamine and the preparation of two previously known aminocarbasugars. All three compounds were synthesised starting from D-mannose, using ring-closing metathesis as the key step. 1,2-Bis-epi-valienamine was found to inhibit Cellulomonas fimi β-mannosidase with a Ki value of 140 mM. Also included is the development of a novel synthetic route from cheap D-fructose to three mannose-mimicking carbasugars using a ring-closing metathesis strategy. Two of the compounds are potential inhibitors of the FimH adhesin. In Chapters 4 and 5 the synthesis of a number of pseudodisaccharides are presented; valienamine- and epi-valienamine-containing pseudodisaccharides and a small library of S-linked pseudodisaccharides were prepared. Various synthetic strategies were explored, including an alkylation strategy, Mitsunobu couplings, and sulfonate displacements. This is the first report on the synthesis of a valienamine pseudodisaccharide with β-lyxo-configuration. Two of the S-linked pseudodisaccharides were found to bind to Concanavalin A with high affinity. The final chapter (Chapter 6) of this thesis focuses on the development of a carbohydrate epimerisation method using transition metal catalysis. Two equilibrium constants involving gluco/manno- and gluco/allo-alcohols were determined via this method. / At the time od doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 3: Manuscript. Paper 5: Manuscript.

Page generated in 0.0424 seconds