• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oxidative addition of amino acids to iridium(I) metal centers

Huff, Lisa Ann 07 November 2008 (has links)
The oxidative addition of both monosubstituted and disubstituted a.-amino acids to [Ir(COD)(PMe3)3]Cl (COD = cyclooctadiene) was studied and the reactivity of the resulting complexes was examined. The reaction of [Ir(COD)(PMe3)3]CI with the disubstituted amino acids, diphenylglycine and methyl phenyl alanine, led to an almost exclusive facial product. Monosubstituted amino acid complexes were observed to be mixtures of the meridional and facial isomers with the meridional isomer largely predominating. The meridional isomer was found to convert to the facial isomer when heated for several days at 100°C. In fact, a predominantly meridional mixture was found to convert to a predominantly facial mixture upon heating. The facial isomer was therefore shown to be the thermodynamic product from the mixture. Small amounts of other isomers were observed in the hydride region of the proton NMR spectrum. One resonance at -23.75 ppm disappeared upon heating t-butyl acetylene with the amino acid complex. The disappearance of this hydride resonance may indicate the insertion of the unsaturate into the Ir-H bond, or alternatively, the conversion of this isomer to a more thermodynamically stable isomer. Reactions of these complexes with methylpropiolate and acrylamide were attempted but evidence of an insertion product was not found. / Master of Science

Page generated in 0.4213 seconds