• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EBSD characterization of the eutectic microstructure in hypoeutectic Fe-C and Fe-C-Si alloys

Kante, Stefan, Leineweber, Andreas 07 August 2023 (has links)
Hypoeutectic Fe-C and Fe-C-Si model alloys were produced at different solidification conditions. Copper mold casting yields low cooling rates promoting the formation of a eutectic microstructure characterized by two morphologies: elongated cementite plates and a rod structure growing perpendicular to the plates, i.e. austenite rods in a cementite matrix. Electron beam surface remelting generates a mainly plate-like eutectic due to rapid solidification. The microstructures were characterized by light-optical microscopy and electron backscatter diffraction (EBSD). The latter allows for a spatially resolved investigation of the growth crystallography of the eutectic phases. Thereby, a possible existence of crystallographic orientations relationships between cementite and austenite within the plate-like eutectic was assessed experimentally. The eutectic phases were found to grow largely crystallographically independently. Moreover, ferrite and eutectic cementite within the decomposed eutectic microstructure comply frequently with the Bagaryatsky or the Pitsch-Petch orientation relationship. Complementary X-ray diffraction (XRD) analysis reveals a pronounced cementite {002} texture in the microstructure produced by mold casting. Characteristic changes in the lattice parameters indicate that as-cast cementite is non-stoichiometric.

Page generated in 0.0715 seconds