• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Considering Manufacturing in the Design of Thick-Panel Origami Mechanisms

Crampton, Erica Brunson 01 October 2017 (has links)
Origami has been investigated and demonstrated for engineering applications in recent years. Many techniques for accommodating the thickness of most engineering materials have been developed. In this work, tables comparing performance and manufacturing characteristics are presented. These tables can serve as useful design tools for engineers when selecting an appropriate thickness-accommodation technique for their application. The use of bent sheet metal for panels in thick-origami mechanisms shows promise as a panel design approach that mitigates several trade-offs between performance and manufacturing characteristics. A process is described and demonstrated that can be employed to use sheet metal in designs of origami-adapted mechanisms that utilize specific thickness-accommodation techniques. Data structures based on origami can be useful in the automation of thick-origami mechanism design. The use of such data structures is explained and shown in the context of a program that will automatically create the 3D CAD models and assembly of a thick-origami mechanism using the tapered panels technique based on the input origami crease pattern. Manufacturability in the design of origami-adapted mechanisms is discussed through presenting and examining three examples of origami-adapted mechanisms. As the manufacturability of origami-adapted products is addressed and improved, their robustness will also improve, thereby enabling greater use of origami-adapted design.
2

Methods for Creating Rigid Foldability in Origami-Inspired Deployable Mechanisms

Yellowhorse, Alden Daniel 01 July 2018 (has links)
Because origami has proved to be a tremendously rich source of inspiration in engineering, interest in solving some of the challenges that affect origami-inspired design has been significant. One such challenge involves ensuring that origami-inspired mechanisms are rigid-foldable or capable of moving without requiring links to bend or distort. Because rigid-foldability is essential in mechanisms that are constructed using rigid materials, access to methods of engineering this characteristic are highly desirable. This research addresses this need by developing methods for the design of origami-inspired mechanisms that are rigid-foldable. Methods for modifying crease patterns to achieve this are described and compared. Methods for achieving rigid-foldability using thick materials are also developed. Proofs of a process for generating new variations of existing thick-origami models are developed and demonstrated on multiple models. The possibility of using compliant panels to create rigid-foldability is also studied.Because of the relationship between mechanism stiffness and rigid-foldability, means of managing the pattern stiffness are also examined. The design of compliant, deployable stiffeners is studied to permit a comparison of different stiffener types. This comparison is used to identify dominant configurations that are most advantageous for a deployable mechanism. The use of thick-origami models are also considered. The geometry of two varieties of a cantilever tube are optimized to support a cantilever beam.

Page generated in 0.0689 seconds