• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 15
  • 12
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 126
  • 126
  • 117
  • 38
  • 36
  • 30
  • 26
  • 26
  • 23
  • 23
  • 23
  • 21
  • 21
  • 20
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Energy efficient thermal management of data centers via open multi-scale design

Samadiani, Emad 20 August 2009 (has links)
Data centers are computing infrastructure facilities that house arrays of electronic racks containing high power dissipation data processing and storage equipment whose temperature must be maintained within allowable limits. In this research, the sustainable and reliable operations of the electronic equipment in data centers are shown to be possible through the Open Engineering Systems paradigm. A design approach is developed to bring adaptability and robustness, two main features of open systems, in multi-scale convective systems such as data centers. The presented approach is centered on the integration of three constructs: a) Proper Orthogonal Decomposition (POD) based multi-scale modeling, b) compromise Decision Support Problem (cDSP), and c) robust design to overcome the challenges in thermal-fluid modeling, having multiple objectives, and inherent variability management, respectively. Two new POD based reduced order thermal modeling methods are presented to simulate multi-parameter dependent temperature field in multi-scale thermal/fluid systems such as data centers. The methods are verified to achieve an adaptable, robust, and energy efficient thermal design of an air-cooled data center cell with an annual increase in the power consumption for the next ten years. Also, a simpler reduced order modeling approach centered on POD technique with modal coefficient interpolation is validated against experimental measurements in an operational data center facility.
82

A method for reducing dimensionality in large design problems with computationally expensive analyses

Berguin, Steven Henri 08 June 2015 (has links)
Strides in modern computational fluid dynamics and leaps in high-power computing have led to unprecedented capabilities for handling large aerodynamic problem. In particular, the emergence of adjoint design methods has been a break-through in the field of aerodynamic shape optimization. It enables expensive, high-dimensional optimization problems to be tackled efficiently using gradient-based methods in CFD; a task that was previously inconceivable. However, adjoint design methods are intended for gradient-based optimization; the curse of dimensionality is still very much alive when it comes to design space exploration, where gradient-free methods cannot be avoided. This research describes a novel approach for reducing dimensionality in large, computationally expensive design problems to a point where gradient-free methods become possible. This is done using an innovative application of Principal Component Analysis (PCA), where the latter is applied to the gradient distribution of the objective function; something that had not been done before. This yields a linear transformation that maps a high-dimensional problem onto an equivalent low-dimensional subspace. None of the original variables are discarded; they are simply linearly combined into a new set of variables that are fewer in number. The method is tested on a range of analytical functions, a two-dimensional staggered airfoil test problem and a three-dimensional Over-Wing Nacelle (OWN) integration problem. In all cases, the method performed as expected and was found to be cost effective, requiring only a relatively small number of samples to achieve large dimensionality reduction.
83

Influence of asymmetric valve timing strategy on in-cylinder flow of the internal combustion engine

Butcher, Daniel S. A. January 2016 (has links)
Variable Valve Timing (VVT) presents a powerful tool in the relentless pursuit of efficiency improvements in the internal combustion engine. As the valves have such ultimate control over the gas exchange processes, extensive research effort in this area has shown how valve event timing can be manipulated to reduce engine pumping losses, fuel consumption and engine out emissions. Pumping losses may be significantly reduced by use of throttleless strategies, making use of intake valve duration for load control, while alternative cycles such as the Miller cycle allow modification of the effective compression ratio. More recently, the value of single valve operation in part load conditions is exploited, bringing with it the concept of asymmetric valve lifts. Work in this area found the side effect of asymmetric valve operation is a significant change in the behaviour of the in-cylinder flow structures, velocities and turbulence intensity. Work presented in this thesis exploits asymmetric valve strategies to modify the in-cylinder flow conditions. The Proper Orthogonal Decomposition (POD) is a method employed in the fluids dynamics field to facilitate the separation of coherent motion structures from the turbulence. In the presented work, the application of POD to in-cylinder flow analysis is further developed by the introduction of a novel method for identifying the POD modes representative of coherent motion and those representative of the turbulence. A POD mode correlation based technique is introduced and developed, with the resulting fields showing evidence of coherence and turbulence respectively. Experimental tests are carried out using a full length optically accessible, single cylinder research engine equipped with a fully variable valve train (FVVT) to allow full control of both valve timing and lift. In-cylinder flow is measured through the use of Particle Image Velocimetry (PIV) at several crank angle timings during the intake stroke whilst the engine is operated under a range of asymmetric valve strategies. The exhaust valves and one intake valve have their respective schedules fixed, while the second intake valve schedule is adjusted to 80\%, 60\%, 40\%, 20\%, 0\% lift. The resulting PIV fields are separated into coherent motion and turbulence using the developed technique, allowing for analysis of each constituent independently. The coherent element gives insight to large scale flows, often of the order of magnitude of the cylinder. These structures not only give a clear indication of the overall motion and allow assessment of flow characteristics such as swirl and tumble ratio, but the variation in the spatial location of these structures provides additional insight to the cyclic to cycle variation (CCV) of the flow, which would not otherwise be possible due to the inclusion of the turbulent data. Similarly, with the cyclic variation removed from the turbulent velocity field, a true account of the fluctuating velocity, u' and derived values such as the Turbulent Kinetic Energy (TKE) may be gained. Results show how manipulation of a one intake valve timing can influence both the large scale motions and the turbulence intensity. By the reduction of lift, the swirl ratio is increased almost linearly as the typical counter-rotating vortex pair becomes asymmetric, before a single vortex structure is observed in the lowest lift cases. A switching mechanism between the two is identified and found to be responsible for increased levels of CCV. With the reduction in lift, TKE is observed not only to increase, but change the spatial distribution of turbulence. Of course, the reduction in valve lift comes with the penalty of a reduced valve curtain area. However, it was identified both in literature and throughout this study that the reduction in lift did not negatively influence the engine breathing as the same trapped mass was achieved under all cases with no adjustment of manifold pressure. While literature shows both bulk motion and turbulence are key in liquid fuel break-up during the intake stroke, the mixing effects under port-injected natural gas were investigated experimentally using Laser Induced Fluorescence (LIF). The valve strategy was found to have no significant effect on the mixture distribution at the time of spark.
84

Avaliação da técnica de decomposição por componentes ortogonais para identificação de faltas de alta impedância / Evaluation of the orthogonal decomposition technique for high impedance fault detection

Daniel da Costa Picchi 18 May 2018 (has links)
Este trabalho apresenta o estado da arte das técnicas mais aplicadas para localização de faltas e modelagem de faltas de alta impedância e propõe a utilização de uma recente técnica baseada na decomposição dos sinais em componentes ortogonais. Este estudo avalia a aplicabilidade da técnica proposta utilizando dados reais de um sistema de distribuição de energia brasileiro, além de apresentar os conceitos teóricos sobre a decomposição em componentes ortogonais. / This work presents the state of the art of the most used techniques for locating and modelling high impedance faults and proposes the use of a recent technique based on the decomposition of the signals in orthogonal components. The objective of this study is to evaluate the application of the proposed technique using real data from a Brazilian distribution network, and presents the theory on orthogonal decomposition.
85

Acoustic absorption and the unsteady flow associated with circular apertures in a gas turbine environment

Rupp, Jochen January 2013 (has links)
This work is concerned with the fluid dynamic processes and the associated loss of acoustic energy produced by circular apertures within noise absorbing perforated walls. Although applicable to a wide range of engineering applications particular emphasis in this work is placed on the use of such features within a gas turbine combustion system. The primary aim for noise absorbers in gas turbine combustion systems is the elimination of thermo-acoustic instabilities, which are characterised by rapidly rising pressure amplitudes which are potentially damaging to the combustion system components. By increasing the amount of acoustic energy being absorbed the occurrence of thermo-acoustic instabilities can be avoided. The fundamental acoustic characteristics relating to linear acoustic absorption are presented. It is shown that changes in orifice geometry, in terms of gas turbine combustion system representative length-to-diameter ratios, result in changes in the measured Rayleigh Conductivity. Furthermore in the linear regime the maximum possible acoustic energy absorption for a given cooling mass flow budget of a conventional combustor wall will be identified. An investigation into current Rayleigh Conductivity and aperture impedance (1D) modelling techniques are assessed and the ranges of validity for these modelling techniques will be identified. Moreover possible improvements to the modelling techniques are discussed. Within a gas turbine system absorption can also occur in the non-linear operating regime. Hence the influence of the orifice geometry upon the optimum non-linear acoustic absorption is also investigated. Furthermore the performance of non-linear acoustic absorption modelling techniques is evaluated against the conducted measurements. As the amplitudes within the combustion system increase the acoustic absorption will transition from the linear to the non-linear regime. This is important for the design of absorbers or cooling geometries for gas turbine combustion systems as the propensity for hot gas ingestion increases. Hence the relevant parameters and phenomena are investigated during the transition process from linear to non-linear acoustic absorption. The unsteady velocity field during linear and non-linear acoustic absorption is captured using particle image velocimetry. A novel analysis technique is developed which enables the identification of the unsteady flow field associated with the acoustic absorption. In this way an investigation into the relevant mechanisms within the unsteady flow fields to describe the acoustic absorption behaviour of the investigated orifice plates is conducted. This methodology will also help in the development and optimisation of future damping systems and provide validation for more sophisticated 3D numerical modelling methods. Finally a set of design tools developed during this work will be discussed which enable a comprehensive preliminary design of non-resonant and resonant acoustic absorbers with multiple perforated liners within a gas turbine combustion system. The tool set is applied to assess the impact of the gas turbine combustion system space envelope, complex swirling flow fields and the propensity to hot gas ingestion in the preliminary design stages.
86

A Study On Boundary Layer Transition Induced By Large Freestream Disturbances

Mandal, Alakesh Chandra 12 1900 (has links) (PDF)
The initial slow viscous growth of the Tollmein-Schlichting wave in a canonical boundary layer transition is absent in bypass and wake-induced transitions. Although there have been a great deal of studies pertaining to bypass transition in boundary layers, the underlying breakdown mechanism is not clearly understood and it continues to be a subject of interest. Similarly, a wake-induced transition caused by Karman wake in the freestream remains poorly understood. The breakdown in this case is caused by anisotropic disturbances containing large scale unsteadiness in the freestream. Differing view points among workers on the transition process have also added to the complexities. In this thesis, bypass and wake-induced boundary layer transitions studied experimentally towards understanding various flow breakdown features are reported. The measurements were made on a flat plate boundary layer in a low-speed wind tunnel. The particle image velocimetry (PIV) technique was extensively used. Various grids were used to generate nearly isotropic freestream turbulence. A circular cylinder was placed at different heights from the plate leading edge to generate Karman wake in the freestream. Two cylinders of different diameters were used to vary the Reynolds number(based on the cylinder diameter). The PIV measurements being simultaneous over a large spatial domain enabled to assess various spatial transitional flow structures. In the case of bypass transition, the streamwise velocity fluctuation, u, is found to exhibit some organized negative and positive fluctuations that dominate the flow during transition, and confirm the simulation results reported in the literature. These positive and negative u fluctuations are found to be associated with the streak unsteadiness. By conditional sampling of these positive and negative u fluctuations, we find that urms (root-mean-squaredof u)can be expressed as a linear combination of urms,f and urms,b,i.e. urms = a(urms,f + urms,b); ais constant, and the subscripts fand bdenote the positive and nega-tive ufluctuations, respectively. Both urms,f and urms,b arefoundto follow the non-modal growth distribution. The wall-normal results clearly show that an inclined shear layer is often associated with an organized structure of negative ufluctuations and an inflectional in-stantaneous velocity profile. These inclined shear layers appear to be similar to those in ribbon-induced transition. The turbulent spot precursor appears to be the vortex shedding from an oscillating in-clined shear layer. Interestingly, the normalized vortex shedding fre-quency is found to be Reynolds number invariant, as in the case of ribbon-induced transition. The present study also confirms the sim-ulated turbulent spot features, including a thin log-law at the break-down stage. The spanwise plane PIV results reveal the signature of streak secondary instability in the flow in terms of symmetric and anti-symmetric streaks oscillations. The initial growth of streak amplitude is followed by a slow decay. The maximum streak amplitude is well above30% of the freestream velocity. These two aspects provide support to the streak instability analysis reported in the literature. While the present wake-induced transition study provides some sup-port to the available numerical simulation and experimental results, some new results have also emerged. The measured sharp rise in the disturbance energy during transition is found to be closer to the simulated result, compared to the difference reported in the literature. The spanwise vortices in the early stage, as also seen in other experimental studies, deform leading to the formation of lambda structures, the signature of which is found by the linear stochastic analysis. With increased Reynolds number and decreased cylinder height from the plate, the physical size of the lambda structure is found to decrease. These lambda structures are often found to appear in a staggered manner in the spanwise plane, as in the case of sub-harmonic boundary layer transition. Although a sub-harmonic peak in the frequency spectra is reported in the literature, as also in the present study, the clear staggered pattern went unnoticed. Streamwise streaks are subsequently generated due to the mean shear stretching of these lambda vortices. The spanwise spacing of these streamwise streaks is found to be comparable with the recent simulation results. Also, these streaks are found to undergo somewhat sinuous-like oscillations, compared to the only varicose type oscillations reported in the literature. The streak amplitude is found to saturate at about 35% of the freestream speed. Here again an inclined shear layer in the wall-normal plane is associated with organized negative u fluctuations and an inflectional instantaneous velocity profile. The movement of the peak urms towards the wall is found to be due to the positive u fluctuation, which follows a hairpin-like structure. The inclined shear layers herein are associated with the lambda or a hairpin-like structure. As in a by-pass transition, an inclined shear layer, vortex shedding from it, the imprint of which is also found in the linear stochastic analysis are present. The normalized high frequency shed vortices is found to be Reynolds number invariant in the present wake-induced transition, as in ribbon-induced and bypass transitions. Compared to the re-cent suggestion that the parent-offspring mechanism is the governing self-sustaining mechanism in the boundary layer, the present study suggests that streak-instability mechanism is also present. The proper orthogonal decomposition(POD) analysis of the experimental data was carried out with an emphasis on the bypass transition case studied. The first few energetic POD modes are found to capture the dominant flow structures, i.e. the organized positive and negative u fluctuations. In the case of bypass transition, the first two energetic POD modes are self-similar, i.e. independent of the freestream turbulent intensity and the Reynolds number. An attempt is also made to construct a low-dimensional model with the POD eigenfunction modes to predict the qualitative dynamics of bypass transition. This has revealed the existence of a traveling disturbance in the bypass transition. On the whole, the present study shows some similar breakdown features in bypass and wake-induced transitions, although more studies in this regard are essential.
87

Quelques approches non linéaires en réduction de complexité / A few non linear approaches in model order reduction

Cagniart, Nicolas 05 November 2018 (has links)
Les méthodes de réduction de modèles offrent un cadre général permettant une réduction de coûts de calculs substantielle pour les simulations numériques. Dans cette thèse, nous proposons d’étendre le domaine d’application de ces méthodes. Le point commun des sujets discutés est la tentative de dépasser le cadre standard «bases réduites» linéaires, qui ne traite que les cas où les variétés solutions ont une petite épaisseur de Kolmogorov. Nous verrons comment tronquer, translater, tourner, étirer, comprimer etc. puis recombiner les solutions, peut parfois permettre de contourner le problème qui se pose lorsque cette épaisseur de Kolmogorov n’est pas petite. Nous évoquerons aussi le besoin de méthodes de stabilisation sur-mesure pour le cadre réduit. / Model reduction methods provide a general framework for substantially reducing computational costs of numerical simulations. In this thesis, we propose to extend the scope of these methods. The common point of the topics discussed here is the attempt to go beyond the standard linear "reduced basis" framework, which only deals with cases where the solution manifold have a small Kolmogorov width. We shall see how truncate, translate, rotate, stretch, compress etc. and then recombine the solutions, can sometimes help to overcome the problem when this Kolmogorov width is not small. We will also discuss the need for tailor-made stabilisation methods for the reduced frame.
88

Analysis of Flow Structures in Wake Flows for Train Aerodynamics

Muld, Tomas W. January 2010 (has links)
Train transportation is a vital part of the transportation system of today anddue to its safe and environmental friendly concept it will be even more impor-tant in the future. The speeds of trains have increased continuously and withhigher speeds the aerodynamic effects become even more important. One aero-dynamic effect that is of vital importance for passengers’ and track workers’safety is slipstream, i.e. the flow that is dragged by the train. Earlier ex-perimental studies have found that for high-speed passenger trains the largestslipstream velocities occur in the wake. Therefore the work in this thesis isdevoted to wake flows. First a test case, a surface-mounted cube, is simulatedto test the analysis methodology that is later applied to a train geometry, theAerodynamic Train Model (ATM). Results on both geometries are comparedwith other studies, which are either numerical or experimental. The comparisonfor the cube between simulated results and other studies is satisfactory, whiledue to a trip wire in the experiment the results for the ATM do not match.The computed flow fields are used to compute the POD and Koopman modes.For the cube this is done in two regions of the flow, one to compare with a priorpublished study Manhart & Wengle (1993) and another covering more of theflow and especially the wake of the cube. For the ATM, a region containing theimportant flow structures is identified in the wake, by looking at instantaneousand fluctuating velocities. To ensure converged POD modes two methods toinvestigate the convergence are proposed, tested and applied. Analysis of themodes enables the identification of the important flow structures. The flowtopologies of the two geometries are very different and the flow structures arealso different, but the same methodology can be applied in both cases. For thesurface-mounted cube, three groups of flow structures are found. First groupis the mean flow and then two kinds of perturbations around the mean flow.The first perturbation is at the edge of the wake, relating to the shear layerbetween the free stream and the disturbed flow. The second perturbation isinside the wake and is the convection of vortices. These groups would then betypical of the separation bubble that exists in the wake of the cube. For theATM the main flow topology consists of two counter rotating vortices. Thiscan be seen in the decomposed modes, which, except for the mean flow, almostonly contain flow structures relating to these vortices. / QC 20100518 / Gröna Tåget
89

Two-phase flow instabilities in an open natural circulation system

Manthey, René 20 December 2022 (has links)
Die vorliegende Arbeit befasst sich mit der Stabilitätsuntersuchung von offenen Naturumlaufsystemen als Grundlage zur Verwendung als passives Wärmeabfuhrsystem im Sicherheitsbehälter eines Siedewasserreaktors. Der Betrieb eines solchen Systems im Naturumlauf basiert einzig auf der Ausbildung eines Dichtegradienten, der infolge einer freien Konvektion zu einer Strömung innerhalb dieses Systems führt. Dieser Dichtegradient im Arbeitsfluid wird durch die Wärmezu- und -abfuhr hervorgerufen. Der sich ausbildende und kontinuierlich steigende Massenstrom geht bei Erreichen der Sättigungstemperatur in Massenstromoszillationen, den sogenannten Zweiphasenströmungsinstabilitäten, über. Mit steigender Temperatur des Arbeitsfluides kehrt der Massenstrom zu einer stabilen Strömung und kontinuierlichen Wärmeabfuhr zurück, jedoch als Zweiphasenströmung. Es wurde an der Technischen Universität Dresden eine Versuchsanlage errichtet, die den Gebäudekondensator des KERENA\textsuperscript{TM}(ehemals SWR1000)-Reaktorkonzepts nachstellt, um die Anlagen- und die Betriebscharakteristik hinsichtlich geometrischer Einflüsse zu bewerten. Mit Hilfe hochauflösender Temperatur und Volumendampfgehaltsmessung wurde festgestellt, dass bei parallel angeordneten Steigrohren die durch Kondensationsschläge hervorgerufenen Druckschläge stark reduziert oder sogar unterbunden werden konnten. So fungiert eines der Steigrohre als Puffer für rückströmendes unterkühltes Fluid aus der Wärmesenke in dem anderen. Zusammengefasst wurde zudem die Betriebscharakteristik in Stabilitätskarten, die die stabile Einphasenströmung, die instabile Zweiphasenströmung und die stabile Zweiphasenströmung eindeutig voneinander abgrenzt. Die Vorhersage der Stabilitätsgrenze zwischen instabiler und stabiler Zweiphasenströmung durch einen analytischen Ansatz ist gelungen. Das zugrundeliegende Modell für ein solches offenes Naturumlaufsystem wurde durch die Methode der gewichteten Residuen und die Finite-Volumen-Methode gelöst und mit Hilfe der Proper Orthogonal Decomposition auf ein Modell niedriger Ordnung reduziert (ROM). Vergleichsrechnungen mit einem entwickelten Abbild des Versuchsstandes GENEVA unter Verwendung des bereits validierten Systemcodes ATHLET der \textit{Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH} bestätigten die berechneten Betriebszustände und letztendlich die durch die lineare Stabilitätsuntersuchung ermittelte Stabilitätsgrenze. Eben dieses ROM bildet die Zweiphasenströmung mittels des \textit{Drift-flux mixture} Modells ab, welches die relativen Geschwindigkeiten jeder Phase berücksichtigt. Die nichtlineare Stabilitätsuntersuchung dieses ROMs ergab an ausgewählten Referenzbetriebspunkten superkritische Hopfbifurkationen, die nur durch die Detektion aufkommender stabiler Grenzzyklen während der numerischen Integration nachgewiesen werden konnten. Parameterstudien zur Stabilitätsanalyse können durch dieses ROMs unter erheblicher Reduktion von Rechenaufwand durchgeführt werden.
90

Expedient Modal Decomposition of Massive Datasets Using High Performance Computing Clusters

Vyapamakula Sreeramachandra, Sankeerth 02 August 2018 (has links)
No description available.

Page generated in 0.1012 seconds