1 |
Detection of orthologs via genetic mapping augmentation2013 January 1900 (has links)
Researchers interested in examining a given species of interest (or target species) that lacks complete sequence data can infer some knowledge of that species from one or more related species that has a complete set of data. To infer knowledge, it is desired to compare the available sequence data between the two species to find orthologs. However, without complete data sets, one cannot be certain of the validity of the detected orthologs.
Using ortholog detection systems in concert with species’ mapping data, researchers can find regions of shared synteny, allowing for more certainty of the detected orthologs as well as allowing inference of some genetic information based on these regions of shared synteny. A pipeline software solution, Detection of Orthologs via Genetic Mapping Augmentation (DOGMA), was developed for this purpose.
DOGMA’s functionality was tested using a target species, Phaseolus vulgaris, which only had partial sequence data available, and a closely related species, Glycine max, which has a fully se- quenced genome. On sequence similarity alone, which is the standard technique for detecting or- thologs, 205 potential orthologs were detected. DOGMA then filtered these results using mapping data from each species to determine that 121 of the 205 were quite likely true orthologs, referred to as putative orthologs, and the remaining 84 were categorized as reduced orthologs as there was either insufficient information present or were clearly outside a noted region of shared synteny. This provides evidence that DOGMA is capable of reducing false positives versus traditional techniques, such as applications based on Reciprocal Best BLAST Hits. If we interpret the output of the Or- tholuge program as the correct answer, DOGMA achieves 95% sensitivity. However, it is possible that some of the reduced orthologs classified by DOGMA are actually Ortholuge’s false positives, since DOGMA is using mapping data. To support this idea, we show DOGMA’s ability to detect false positives in the results of Ortholuge by artificially creating a paralog and removing the real ortholog. DOGMA properly classifies this data as opposed to Ortholuge.
|
2 |
Biochemical and genetic characterization of mercaptopyruvate sulfurtransferase and paralogous putative sulfurtransferases of Escherichia coliJutabha, Promjit 25 June 2001 (has links)
Sulfurtransferases, including mercaptopyruvate sulfurtransferase and rhodanese, are widely distributed in living organisms. Mercaptopyruvate sulfurtransferase and rhodanese catalyze the transfer of sulfur from mercaptopyruvate and thiosulfate, respectively, to sulfur acceptors such as thiols or cyanide. There is evidence to suggest that rhodanese can mobilize sulfur from thiosulfate for in vitro formation of iron-sulfur clusters. Additionally, primary sequence analysis reveals that MoeB from some organisms, as well as ThiI of Escherichia coli, contain a C-terminal sulfurtransferase domain. MoeB is required for molybdopterin biosynthesis, whereas ThiI is necessary for biosynthesis of thiamin and 4-thiouridine in transfer ribonucleic acid. These observations led to the hypothesis that sulfurtransferases might be involved in sulfur transfer for biosynthesis of some sulfur-containing cofactors (e.g., biotin, lipoic acid, thiamin and molybdopterin). Results of a BLAST search revealed that E. coli has at least eight potential sulfurtransferases, besides ThiI. Previously, a glpE-encoded rhodanese of E. coli was characterized in our laboratory. In this dissertation, a mercaptopyruvate sulfurtransferase and corresponding gene (sseA) of E. coli were identified. In addition, the possibility that mercaptopyruvate sulfurtransferase could participate or work in concert with a cysteine desulfurase, IscS, in the biosynthesis of cofactors was examined.
Cloning of the sseA gene and biochemical characterization of the corresponding protein were used to show that SseA is a mercaptopyruvate sulfurtransferase of E. coli. A strain with a chromosomal insertion mutation in sseA was constructed in order to characterize the physiological function of mercaptopyruvate sulfurtransferase. However, the lack of SseA did not result in a discernable phenotypic change. Redundancy of sulfurtransferases in E. coli may prevent the appearance of a phenotypic change due to the loss of a single sulfurtransferase. Subsequently, other paralogous genes for putative sulfurtransferases, including ynjE and yceA, were cloned. Strains with individual deletions of the chromosomal ynjE and yceA genes were also constructed. Finally, strains with multiple deficiency in potential sulfurtransferase genes, including sseA, ynjE and glpE, as well as iscS, were created. However, no phenotype associated with combinations of sseA, glpE and/or ynjE deficiency was identified. Therefore, the physiological functions of mercaptopyruvate sulfurtransferase and related sulfurtransferases remain unknown. / Ph. D.
|
3 |
Klonování, exprese a biochemická charakterizace myší glutamátkarboxypeptidasy II / Cloning, expression and biochemical characterisation of mouse glutamate carboxypeptidase II.Knedlík, Tomáš January 2010 (has links)
English Abstract Glutamate carboxypeptidase II (GCPII) is a membrane metallopeptidase expressed in many human tissues, predominantly in prostate, brain and small intestine. In brain it cleaves the most abundant peptide neurotransmitter N-acetyl-L-aspartyl-α-L-glutamate into N-acetyl-L-aspartate and free L-glutamate. Thus, GCPII participates in glutamate excitotoxicity through the release of free glutamate into the synaptic cleft. Inhibition of this activity has been shown to be neuroprotective in rats. In the human jejunal brush border, GCPII cleaves off terminal glutamate moieties from poly-γ-glutamylated folates, which can be then transported across the intestinal mucosa. The function of GCPII in human prostate is unknown but it is overexpressed in prostate cancer. Therefore, GCPII is an important marker of prostate cancer and its progression.Moreover, it could become a perspective target for treatment of prostate cancer as well as neuronal disorders associated with glutamate excitotoxicity. For the development and testing of novel drugs and therapeutics it is necessary to have an appropriate animal model. Mouse (Mus musculus) is such a model and it is widely used by many experimentators. However, no detailed comparison of mouse and human GCPII orthologs regarding their enzymatic activity, inhibition...
|
4 |
Comparação filogenética de genomas de rizóbios por hibridização através de microarrayPereira, Rodrigo Matheus [UNESP] 14 December 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:53Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-12-14Bitstream added on 2014-06-13T18:44:27Z : No. of bitstreams: 1
pereira_rm_dr_jabo.pdf: 415712 bytes, checksum: 3a2847df5213880b53630ad700a376be (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Diversos estudos com bactérias fixadoras de nitrogênio buscam identificar genes responsáveis pela fixação de nitrogênio, nodulação e simbiose, assim como conhecer seu genoma e compreender melhor o metabolismo delas. No entanto ainda há poucos trabalhos sobre o genoma de Bradyrhizobium elkanii, bactéria importante no contexto da produção de alimentos e de utilização comercial. Esse é o primeiro estudo a comparar 2654 genes de Bradyrhizobium elkanii SEMIA 587, com as bactérias Bradyrhizobium japonicum LGM 6138, Azorhizobium caulinodans LGM 6465, Mesorhizobium huakuii LGM 14107, Rhizobium leguminosarum bv. Trifolii LGM 8820 e Sinorhizobium meliloti LGM 6133 através da comparação de genomas por hibridização (CGH) usando Microarray. Portanto o objetivo deste trabalho foi realizar uma taxonomia molecular através da comparação de genomas por hibridização DNA-DNA, utilizando a tecnologia de microarranjos de DNA (CGH Microarray), para buscar novos genes que possam ser úteis na classificação filogenética de rizóbios. A técnica de CGH Microarray permitiu encontrar sessenta e cinco genes comuns entre todas as bactérias analisadas, após realizar comparação e classificação de todos genes encontrados em comum entre elas. Os resultados obtidos ao se comparar três árvores filogenéticas baseadas em diferentes genes, confirmaram que alterar a quantidade e as sequências nas análises, causa variação nas árvores filogenéticas como já observado em outros microrganismos... / Diverse studies with fixing nitrogen bacteria search to identify responsible genes for the nitrogen fix, nodulation and symbiosis, as well as knowing its genome and understanding the metabolism of them better. However still has few works about genome of Bradyrhizobium elkanii, important bacterium in the context of the production of foods and commercial use. This is the first study to compare 2654 genes of Bradyrhizobium elkanii SEMIA 587, with the bacteria Bradyrhizobium japonicum LGM 6138, Azorhizobium caulinodans LGM 6465, Mesorhizobium huakuii LGM 14107, Rhizobium leguminosarum bv. Trifolii LGM 8820 and Sinorhizobium meliloti LGM 6133 through the CGH Microarray. Therefore aim of this work was to carry a molecular taxonomy through the comparison of genomes for hybridization DNA-DNA, being used the technology of microarrangements of DNA (CGH Microarray), to search new genes that can be useful in the phylogenetic classification of rhizobia. The technique of CGH Microarray allowed to find sixty and five orthologs genes between all the analyzed bacteria, after to carry through comparison and classification of all genes in common between them. The results gotten to if comparing three established phylogenetic trees in different genes, had confirmed that to modify the amount and the sequences in the analyses, cause variation in the phylogenetic trees as already observed in other microorganisms. The results suggest that how much bigger will be the number of used ortholog genes in the phylogeny, more trustworthy will be the gotten phylogenetic trees ...(Complete abstract, click electronic access below)
|
5 |
Comparação filogenética de genomas de rizóbios por hibridização através de microarray /Pereira, Rodrigo Matheus. January 2007 (has links)
Orientadora: Eliana Gertrudes Macedo Lemos / Banca: Maria José Valarini / Banca: Haroldo Alves Pereira Junior / Banca: Lúcia Maria Carareto Alves / Banca: João Martins Pizauro Junior / Resumo: Diversos estudos com bactérias fixadoras de nitrogênio buscam identificar genes responsáveis pela fixação de nitrogênio, nodulação e simbiose, assim como conhecer seu genoma e compreender melhor o metabolismo delas. No entanto ainda há poucos trabalhos sobre o genoma de Bradyrhizobium elkanii, bactéria importante no contexto da produção de alimentos e de utilização comercial. Esse é o primeiro estudo a comparar 2654 genes de Bradyrhizobium elkanii SEMIA 587, com as bactérias Bradyrhizobium japonicum LGM 6138, Azorhizobium caulinodans LGM 6465, Mesorhizobium huakuii LGM 14107, Rhizobium leguminosarum bv. Trifolii LGM 8820 e Sinorhizobium meliloti LGM 6133 através da comparação de genomas por hibridização (CGH) usando Microarray. Portanto o objetivo deste trabalho foi realizar uma taxonomia molecular através da comparação de genomas por hibridização DNA-DNA, utilizando a tecnologia de microarranjos de DNA (CGH Microarray), para buscar novos genes que possam ser úteis na classificação filogenética de rizóbios. A técnica de CGH Microarray permitiu encontrar sessenta e cinco genes comuns entre todas as bactérias analisadas, após realizar comparação e classificação de todos genes encontrados em comum entre elas. Os resultados obtidos ao se comparar três árvores filogenéticas baseadas em diferentes genes, confirmaram que alterar a quantidade e as sequências nas análises, causa variação nas árvores filogenéticas como já observado em outros microrganismos ...(Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Diverse studies with fixing nitrogen bacteria search to identify responsible genes for the nitrogen fix, nodulation and symbiosis, as well as knowing its genome and understanding the metabolism of them better. However still has few works about genome of Bradyrhizobium elkanii, important bacterium in the context of the production of foods and commercial use. This is the first study to compare 2654 genes of Bradyrhizobium elkanii SEMIA 587, with the bacteria Bradyrhizobium japonicum LGM 6138, Azorhizobium caulinodans LGM 6465, Mesorhizobium huakuii LGM 14107, Rhizobium leguminosarum bv. Trifolii LGM 8820 and Sinorhizobium meliloti LGM 6133 through the CGH Microarray. Therefore aim of this work was to carry a molecular taxonomy through the comparison of genomes for hybridization DNA-DNA, being used the technology of microarrangements of DNA (CGH Microarray), to search new genes that can be useful in the phylogenetic classification of rhizobia. The technique of CGH Microarray allowed to find sixty and five orthologs genes between all the analyzed bacteria, after to carry through comparison and classification of all genes in common between them. The results gotten to if comparing three established phylogenetic trees in different genes, had confirmed that to modify the amount and the sequences in the analyses, cause variation in the phylogenetic trees as already observed in other microorganisms. The results suggest that how much bigger will be the number of used ortholog genes in the phylogeny, more trustworthy will be the gotten phylogenetic trees ...(Complete abstract, click electronic access below) / Doutor
|
6 |
Application of Next-Generation Transcriptomic Tools for Non-Model Organisms: Gene Discovery and Marker DevelopmentWithin Plecoptera (Insecta)Davis, Nicholas Gregory 01 December 2013 (has links) (PDF)
Phylogenetic research on non-model organisms has been hindered by limited marker availability. Next generation sequencing techniques are eliminating that barrier. Using Illumina sequencing technology, Trinity assembly software, custom Perl reciprocal BLAST scripts, and Primer3 primer prediction software, we produced and analyzed 7 Plecopteran transcriptomes, representing 7 of the 16 total families, in an attempt to identify and develop conserved orthologous genetic markers. The transcriptomes were used to reconstruct a gene content phylogeny using a simple distance matrix generated from reciprocal blastn data. By producing and filtering a reciprocal blast network we identified and aligned over 450 putative orthologs. Out of these, 25 primer pairs were selected that showed 100% conserved primer sites across all the transcripts from which they were created. Of those 25, 3 loci (PlecSK1, Perl534, and PvC2190) show very positive phylogenetic potential. These 3 markers may also be suitable and even highly useful in population genetic studies in which the populations have had sufficient time to develop significant genetic separation. The rapid and affordable nature of this study demonstrates the ease by which non-model organism phylogenetics can be expanded and made more robust.
|
7 |
Identifying selective ligands for glutaredoxin proteins with fragment based drug design approach and optimization of the bacterial selective hitsKhattri, Ram Bahadur 09 June 2016 (has links)
No description available.
|
8 |
Mutagenesis and functional analysis of dveli, the Drosophila ortholog of C. elegans lin-7 / Mutagenesis and functional analysis of dveliHuang, Ying-Hsu 03 1900 (has links)
Proper assembly and localization of receptors and the associated signal transduction protein complex is important for normal cell function. Scaffolding proteins have been implicated in organizing the assembly of protein complex and localization of receptors. PDZ domain containing proteins are one major type of scaffolding protein. One well characterized system is the C. elegans LIN-2/LIN-7/LIN-10 PDZ protein complex. In C. elegans, this protein complex acts as a scaffold for the proper localization of LET-23, the ortholog of EGFR, to the epithelial basolateral membrane. The Drosophila orthologs, cmg, dveli and dmint/dX11L, have been identified. The sequence homologies and expression patterns suggest that these genes may have similar functions as their mammalian orthologs. The possible functions include cell-cell junction formation, receptor localization, ion channel localization and neurotransmitter vesicle trafficking. The main objectives of this thesis work are the mutagenesis and functional analysis of dveli. Potential mutants were generated by P element insertional mutagenesis, however, further analysis is required to identify the affected genes. A systemic RNAi experiment was performed. The delivery mechanism used was the RNAi soaking technique adapted from Dr. Davis’s laboratory protocol. Primary results from RNAi experiments show that loss of dveli function results in a reduction in larval locomotion speed. This slower locomotion phenotype along with the post-synaptic expression of dVELI at larval neuromuscular junction suggest a synaptic role of dVELI, perhaps aiding in synapse formation or proper localization of neurotransmitter receptors. / Thesis / Master of Science (MSc)
|
9 |
STORI: selectable taxon ortholog retrieval iterativelyStern, Joshua Gallant 08 June 2015 (has links)
Speciation and gene duplication are fundamental evolutionary processes that enable biological innovation. For over a decade, biologists have endeavored to distinguish orthology (homology caused by speciation) from paralogy (homology caused by duplication). Disentangling orthology and paralogy is useful to diverse fields such as phylogenetics, protein engineering, and genome content comparison.
A common step in ortholog detection is the computation of Bidirectional Best Hits (BBH). However, we found this computation impractical for more than 24 Eukaryotic proteomes. Attempting to retrieve orthologs in less time than previous methods require, we developed a novel algorithm and implemented it as a suite of Perl scripts. This software, Selectable Taxon Ortholog Retrieval Iteratively (STORI), retrieves orthologous protein sequences for a set of user-defined proteomes and query sequences. While the time complexity of the BBH method is O(#taxa^2), we found that the average CPU time used by STORI may increase linearly with the number of taxa.
To demonstrate one aspect of STORI’s usefulness, we used this software to infer the orthologous sequences of 26 ribosomal proteins (rProteins) from the large ribosomal subunit (LSU), for a set of 115 Bacterial and 94 Archaeal proteomes. Next, we used established tree-search methods to seek the most probable evolutionary explanation of these data. The current implementation of STORI runs on Red Hat Enterprise Linux 6.0 with installations of Moab 5.3.7, Perl 5 and several Perl modules. STORI is available at: <http://github.com/jgstern/STORI>.
|
10 |
The Role of Carotenoid Cleavage Dioxygenase 4 in Flower Color of the Allopolyploid Brassica napusFogg, Leanne Denice 01 July 2014 (has links) (PDF)
Allopolyploids are formed by interspecific hybridization and whole genome duplication, with the resulting organism contains multiple distinct subgenomes in one nucleus. Subgenomic interactions result in massive genetic and epigenetic reconstruction, contributing to variable phenotypic traits noted in newly formed allopolyploids. To better understand these mechanisms in the context of molecular biology, evolution, and plant breeding, plant biologists study the model organism Brassica napus (farmed as canola or oilseed rape). With white-flowering and yellow-flowering progenitors, flower color phenotype of B. napus presents an opportunity to examine subgenomic interactions. CAROTENOID CLEAVAGE DIOXYGENASE 4 (CCD4) is known to play a major role in determining flower color phenotype of carotenoid-synthesizing angiosperms. Here, we investigate the genetic and epigenetic role of CCD4 orthologs and their role in flower color phenotype of B. napus.
|
Page generated in 0.0669 seconds