• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Otimização multinível em predição de links / Multilevel optimization for link prediction

Silva, Vinícius Ferreira da 18 June 2018 (has links)
A predição de links em redes é uma tarefa com aplicações em diversos cenários. Com a automatização de processos, as redes sociais, redes tecnológicas e outras cresceram muito em número de vértices e arestas. Portanto, a utilização de preditores de links em redes com alta complexidade estrutural não é trivial, mesmo considerando algoritmos de baixa complexidade computacional. A grande quantidade de operações necessárias para que os preditores possam escolher quais arestas são promissoras torna o processo de considerar a rede toda inviável na maioria dos casos. As abordagens existentes enfrentam essa característica de diversas formas, sendo que as mais populares são as que limitam o conjunto de pares de vértices que serão considerados para existência de arestas promissoras. Este projeto aborda a criação de uma estratégia que utiliza otimização multinível para contrair as redes, executar os algoritmos de predição de links nas redes contraídas e projetar os resultados de predição para a rede original, para reduzir o número de operações necessárias à predição de links. Os resultados mostram que a abordagem consegue reduzir o tempo necessário para predição, apesar de perdas esperadas na qualidade na predição. / Link prediction in networks is a task with applications in several scenarios. With the automation of processes, social networks, technological networks, and others have grown considerably in the number of vertices and edges. Therefore, the creation of systems for link prediction in networks of high structural complexity is not a trivial process, even considering low-complexity algorithms. The large number of operations required for predicting which edges are promising makes the considering of the whole network impracticable in many cases. The existing approaches face this characteristic in several ways, and the most popular are those that limit the set of vertex pairs that will be considered for the existence of promising edges. This project addresses a strategy that uses multilevel optimization to coarse networks, execute prediction algorithms on coarsened networks and project the results back to the original network, in order to reduce the number of operations for link prediction. The experiments show that the approach can reduce the time despite some expected losses of accuracy.
2

Otimização multinível em predição de links / Multilevel optimization for link prediction

Vinícius Ferreira da Silva 18 June 2018 (has links)
A predição de links em redes é uma tarefa com aplicações em diversos cenários. Com a automatização de processos, as redes sociais, redes tecnológicas e outras cresceram muito em número de vértices e arestas. Portanto, a utilização de preditores de links em redes com alta complexidade estrutural não é trivial, mesmo considerando algoritmos de baixa complexidade computacional. A grande quantidade de operações necessárias para que os preditores possam escolher quais arestas são promissoras torna o processo de considerar a rede toda inviável na maioria dos casos. As abordagens existentes enfrentam essa característica de diversas formas, sendo que as mais populares são as que limitam o conjunto de pares de vértices que serão considerados para existência de arestas promissoras. Este projeto aborda a criação de uma estratégia que utiliza otimização multinível para contrair as redes, executar os algoritmos de predição de links nas redes contraídas e projetar os resultados de predição para a rede original, para reduzir o número de operações necessárias à predição de links. Os resultados mostram que a abordagem consegue reduzir o tempo necessário para predição, apesar de perdas esperadas na qualidade na predição. / Link prediction in networks is a task with applications in several scenarios. With the automation of processes, social networks, technological networks, and others have grown considerably in the number of vertices and edges. Therefore, the creation of systems for link prediction in networks of high structural complexity is not a trivial process, even considering low-complexity algorithms. The large number of operations required for predicting which edges are promising makes the considering of the whole network impracticable in many cases. The existing approaches face this characteristic in several ways, and the most popular are those that limit the set of vertex pairs that will be considered for the existence of promising edges. This project addresses a strategy that uses multilevel optimization to coarse networks, execute prediction algorithms on coarsened networks and project the results back to the original network, in order to reduce the number of operations for link prediction. The experiments show that the approach can reduce the time despite some expected losses of accuracy.
3

PROJETO DE CONTROLADOR ROBUSTO VIA OTIMIZAÇÃO CONVEXA / PROJECT OF ROBUST CONTROLLER WITH OTIMIZAÇÃO CONVEX

Souza, Valeska Martins de 13 February 2002 (has links)
Made available in DSpace on 2016-08-17T14:52:45Z (GMT). No. of bitstreams: 1 Valeska Martins Souza.pdf: 622283 bytes, checksum: 075dc5eb2d1ecc78b4ecd96ae57ab70e (MD5) Previous issue date: 2002-02-13 / In this dissertation a new methodology of based convex optimization in linear matrix inaqualities is proposal as basic instrument for the synthesis of robust controllers of discrete and linear dynamic systems that take care of to the specifications of perturbations of worse case. / Nesta dissertação é proposta uma nova metodologia de otimização convexa baseada em desigualdades matriciais lineares como instrumento básico para a síntese de controladores robustos de sistemas dinâmicos discretos e lineares que atendam às especificações de pertubações de pior caso.

Page generated in 0.0724 seconds