Spelling suggestions: "subject:"afterdischarge"" "subject:"overcharge""
1 |
Li-ion titanate technology for SLI battery applications in commercial vehicles / Li-jon titanat teknologi för SLI-batteritillämpning i kommersiella fordonVasilevich, Liliya January 2021 (has links)
Litiumjon-batterier har blivit väldigt populära för tillämpning i fordon. Den här teknologin har fler olika kemier att erbjuda som kontinuerligt förbättras. Litium-titanat-oxid-batterier använder (LTO) LTO som anod och erbjuder långt cyklingsliv samt minskar risk för SEI-bildning och litiumplätering. Det här examensarbetet siktade på att undersöka om LTO-batterier kan användas som startbatterier i kommersiella fordon. Metodologin inkluderade två motorstart försök med en kommersiell 12s1p LTO-modul, laddnings/urladdningtester med en kommersiell LTO-cell med nominell spänning 2.3V samt överurladdningstester med byggda pouchceller. Materialet för pouchceller extraherades från en kommersiell LTO-cell och sedan studerades med SEM-EDX före och efter överurladdningstesterna. Resultatet visade att LTO-batterier kan användas som startbatterier i en diesel V8 motor även vid 39%SoC. Dessutom visade simuleringar att LTO-batterier kan användas inom Kinetic Energy Recovery System (KERS) tillämpning och behålla 60% SoC efter 500 laddning/urladdnings cykler. Resultaten från både KERS och motorstarterna visade att LTO är en lovande kandidat för ersättning av blybatterier. Laddnings/urladdnings tester visade att en kommersiell 12s1p LTO modul kan maximalt uppnå 73%SoC när den laddas med fordon-liknande strömmar. Däremot var SoC oberoende av laddningsström. Överurladdningstester med pouchceller visade att det är relativt ofarligt att urladda LTO 0.4V under spänningsgränsen utan stora ökningar i impedans eller stor kapacitetsförlust. Största förluster kopplades till åldring av NMC-baserade positiva elektroden. / Lithium ion batteries have become quite popular in vehicle applications in the past few decades. This technology offers multiple chemistries to choose from, that are continuously studied and improved. Lithium-titanate-oxide (LTO) batteries use LTO material as an anode, providing long cycling life, as well as essentially eliminating risk for SEI formation and lithium plating. This Master thesis project aimed to investigate how well LTO-based lithium-ion batteries can perform in Start Ignition Lighting (SLI) application in commercial vehicles. The methodology included two engine crank tests with a commercial 12s1p LTO module, charge/discharge tests on a commercial LTO cell with nominal voltage 2.3V, as well as overdischarge cycling tests on assembled pouch cells. The materials for the pouch cells were extracted from a commercial LTO cell and later analysed with SEM-EDX before and after overdischarge tests. The results demonstrated that LTO-based Li-ion batteries can be successfully start a diesel V8 engine even at 39% SoC. Furthermore, when simulating an urban vehicle with an implemented Kinetic Energy Recovery System (KERS) application, a commercial cell LTO cell achieved and retained around 60\%SoC throughout 500 charge/discharge cycles. Combined results from KERS and engine start tests imply that LTO is a strong candidate for replacing lead-acid in these applications. Charge/discharge tests showed that commercial 12s1p LTO cell can maximum reach around 73%SoC when charged in a vehicle-like way. However, this maximum SoC limit was more or less independent of applied charging current. Furthermore, electrochemical overdischarge tests on the pouch cells demonstrated that it is relatively safe to overdischarge the cell 0.4V below the specified safety limit without significant rise in impedance or capacity fade. Major performance losses were attributed to the aging of the NMC-based positive electrode.
|
Page generated in 0.0606 seconds