• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 6
  • 3
  • 3
  • 1
  • Tagged with
  • 52
  • 33
  • 33
  • 16
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Racking Performance of Light-Frame Shear Walls

Salenikovich, Alexander J. 26 September 2000 (has links)
The response of light-frame timber shear walls to lateral forces is the focus of the dissertation. The objective of this study was to obtain performance characteristics of shear walls with various aspect ratios and overturning restraint via experimental testing and analytical modeling. Presented are the test data of monotonic and cyclic tests on fifty-six light-frame timber shear walls with aspect ratios of 4:1, 2:1, 1:1, and 2:3. Overturning restraint conditions represent engineered construction and conventional construction practices. The walls representative of the engineered construction were attached to the base by means of tie-down anchors and shear bolts. As opposed to engineered construction, conventionally built walls were secured to the base by nails or shear bolts only. The specimens were tested in a horizontal position with oriented strandboard (OSB) sheathing on one side. To obtain conservative estimates, no dead load was applied in the wall plane during the tests. The nail-edge distance across the top and bottom plates varied from 10 mm (3/8 in.) to 19 mm (3/4 in.). Twelve walls were repaired after the initial tests and re-tested. A mechanics-based model was advanced to predict the racking resistance of conventional multi-panel shear walls using simple formulae. The deflections of engineered and conventional shear walls were predicted using the energy method combined with empirical formulae to account for load-deformation characteristics of sheathing-to-framing connections and overturning restraint. The proposed formulae were validated through comparison with test results obtained during this study. The results of the study serve to further development of a mechanics-based methodology for design of shear walls accounting for various wall configurations and boundary conditions. / Ph. D.
12

Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting

Bakker, P., Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D., van den Broeke, M. R., Chan, W.-L., Hu, A., Beadling, R. L., Marsland, S. J., Mernild, S. H., Saenko, O. A., Swingedouw, D., Sullivan, A., Yin, J. 16 December 2016 (has links)
The most recent Intergovernmental Panel on Climate Change assessment report concludes that the Atlantic Meridional Overturning Circulation (AMOC) could weaken substantially but is very unlikely to collapse in the 21st century. However, the assessment largely neglected Greenland Ice Sheet (GrIS) mass loss, lacked a comprehensive uncertainty analysis, and was limited to the 21st century. Here in a community effort, improved estimates of GrIS mass loss are included in multicentennial projections using eight state-of-the-science climate models, and an AMOC emulator is used to provide a probabilistic uncertainty assessment. We find that GrIS melting affects AMOC projections, even though it is of secondary importance. By years 2090-2100, the AMOC weakens by 18% [-3%, -34%; 90% probability] in an intermediate greenhouse-gas mitigation scenario and by 37% [-15%, -65%] under continued high emissions. Afterward, it stabilizes in the former but continues to decline in the latter to -74% [+4%, -100%] by 2290-2300, with a 44% likelihood of an AMOC collapse. This result suggests that an AMOC collapse can be avoided by CO2 mitigation.
13

Investigating Atlantic meridional overturning circulation in the Quarternary using neodymium isotopes

Howe, Jacob Nathan William January 2015 (has links)
No description available.
14

Computational Simulation of Fluid Dynamics in Thin Films

Patil, Anand 01 May 2001 (has links)
We investigate the formation of droplets in a thin liquid film on a solid substrate due to the combined action of surface tension and van der Waals forces. Current models for droplet formation assume that droplets have a shallow profile. By removing that assumption and numerically solving for stable droplet profiles, we have modelled droplets that separate from the substrate on which they sit.
15

A Mechanistic Study of Atlantic Meridional Overturning Circulation Changes on Tropical Atlantic Climate

Wen, Caihong 2009 August 1900 (has links)
An eddy-permitting 2-1/2-layer Reduced Gravity Ocean (RGO) model is developed. Compared with the conventional 2-1/2-layer RGO models, the new model has improvements in subsurface thermodynamics, vertical mixing scheme and open boundary conditions. Using this new 2-1/2-layer RGO model as a dynamical tool, a systematic investigation of the role of oceanic processes in controlling tropical Atlantic sea-surface temperature (SST) response to Atlantic Meridional Overturning Circulation (AMOC) changes is carried out by varying the strength of northward mass transport at the open boundaries. It is found that the North Brazil Undercurrent (NBUC) reverses its direction in response to a shut-down of the AMOC. Such circulation change allows warm waters of the northern subtropical gyre enter the equatorial zone, giving rise to a prominent warming in the Gulf of Guinea and off the coast of Africa. Sensitivity experiments further show that the SST response behaves nonlinearly to AMOC changes. The rate of SST changes increases dramatically when the AMOC strength is below a threshold value. This nonlinear threshold behavior depends on the position of subsurface temperature gradient. The new RGO is coupled to an atmosphere general circulation model (AGCM) (CCM3.6). The coupled model is capable of capturing major features of tropical Atlantic variability. With the aid of this coupled model, a series of experiments with different combinations of oceanic and atmospheric processes are carried out to elucidate the relative importance of the oceanic processes and atmospheric processes in AMOC-induced tropical Atlantic variability/change. It is found that the oceanic processes are a primary factor contributing to the warming at and south of the equator and the precipitation increase over the Gulf of Guinea, while atmospheric processes are responsible for the surface cooling of the tropical north Atlantic and southward displacement of ITCZ. The sensitivity of the coupled system to different strength of the AMOC is further investigated. It is found that equatorial SST and precipitation response also behaves nonlinearly to AMOC changes. The impact of AMOC changes on Tropical Instability Waves (TIWs) is assessed. It is found that the activity of TIWs is reduced in response to the AMOC-induced equatorial SST warming. Correlation analysis suggests that AMOC may affect TIW activities by modifying SST gradient north of the equator.
16

Probabilistic Seismic Demand Model and Fragility Estimates for Symmetric Rigid Blocks Subject to Rocking Motions

Bakhtiary, Esmaeel 02 October 2013 (has links)
This thesis presents a probability model to predict the maximum rotation of rocking bodies exposed to seismic excitations given specific earthquake intensity measures. After obtaining the nonlinear equations of motion and clarification of the boundaries applied to a rocking body to avoid sliding, a complete discussion is provided on the estimation of approximate period and equivalent damping ratio for the rocking motion. Thereafter, instead of using an iterative solution, which was previously proven defective, a new approximate technique is developed by finding the best representative ground motion intensities. Suitable transformation and normalization are applied to these intensities, and the Bayesian Updating approach is employed to construct a probability model. The proposed probability model is capable of accurately predicting the maximum rotation of a symmetric rocking block given displacement design spectra, peak ground acceleration, peak ground velocity, and arias intensity of an earthquake. This probabilistic model along with the approximate capacity of rocking blocks are used to estimate the fragility curves for rocking blocks with specific geometrical parameters. At the end, a comprehensive and practical form of fragility curves and numerical examples are provided for design purposes.
17

Response analysis of rigid structures rocking on viscoelastic foundation

Palmeri, Alessandro, Makris, N. January 2008 (has links)
In this paper the rocking response of slender/rigid structures stepping on a viscoelastic foundation is revisited. The study examines in depth the motion of the system with a non-linear analysis that complements the linear analysis presented in the past by other investigators. The non-linear formulation combines the fully non-linear equations of motion together with the impulse-momentum equations during impacts. The study shows that the response of the rocking block depends on the size, shape and slenderness of the block, the stiffness and damping of the foundation and the energy loss during impact. The effect of the stiffness and damping of the foundation system along with the influence of the coefficient of restitution during impact is presented in rocking spectra in which the peak values of the response are compared with those of the rigid block rocking on a monolithic base. Various trends of the response are identified. For instance, less slender and smaller blocks have a tendency to separate easier, whereas the smaller the angle of slenderness, the less sensitive the response to the flexibility, damping and coefficient of restitution of the foundation.
18

Monotonic and Cyclic Performance of Light-Frame Shear Walls with Various Sheathing Materials

Toothman, Adam James 28 January 2003 (has links)
The racking performance of light-frame shear walls subjected to monotonic and cyclic loading is the focus of this thesis. The sheathing materials investigated are oriented strandboard (OSB), hardboard, fiberboard, and gypsum wallboard. The objectives of this study were to (1) obtain and compare performance characteristics of each sheathing material; (2) compare the effects of monotonic loading versus the cyclic loading response; (3) investigate the contribution of gypsum in walls with dissimilar sheathing materials on opposite sides of the wall; and (4) study the effects of using overturning anchors. The monotonic tests, which incorporated the use of hold-downs, were performed according to ASTM E564. Half of the cyclic tests were performed with hold-downs, and half were performed without hold-downs. The cyclic tests were performed according to the recently adopted cyclic testing procedure ASTM E2126. A total of forty-five walls were tested with various configurations. The size of the walls was 1.2 x 2.4m (4 x 8ft). Two tests were performed with each sheathing material subjected to each type of loading: monotonic, cyclic with hold-downs, and cyclic without hold-downs. Two tests were then performed with OSB, hardboard, or fiberboard on one side of the wall and gypsum on the other side of the wall to study the effects of using dissimilar sheathing materials on the shear walls. The OSB and hardboard exhibited similar performance, and were the strongest of the four sheathing materials. Fiberboard performed better than gypsum, but worse than OSB and hardboard. In general, the performance indicators decreased when the walls were subjected to cyclic loading. The contribution of gypsum to walls with hold-downs was significant, but was not linearly additive. The use of hold-downs had a large effect on the performance of the walls. All shear wall performance indicators decreased when hold-downs were not included, with an average reduction of 66% in the peak load. / Master of Science
19

Performance Capabilities of Light-Frame Shear Walls Sheathed With Long OSB Panels

Bredel, Daniel 13 June 2003 (has links)
In this investigation, thirty-six shear walls measuring 8 feet (2.4 m) in width and possessing heights of 8, 9 and 10 feet (2.4, 2.7 and 3.0 m) were subjected to the reversed, cyclic loading schedule of the standard CUREE protocol in order to determine the performance capabilities of shear walls greater than 8 feet (2.4 m) in height sheathed with long panels. Of the thirty-six walls, a total of twelve walls measuring 9 and 10 feet (2.7 and 3.0 m) in height were sheathed with 4 x 8 feet (1.2 x 2.4 m) panels which required additional blocking members between the studs of the frame. Values obtained from the tests performed on these walls provided a direct comparison to those obtained from the walls of equal height, but sheathed with a long panel capable of spanning the entire height of the wall. The capabilities of long panels were investigated when used as the sheathing elements of shear walls with and without a mechanical hold-down device attached to the base of the end stud. An advantage of the long panel was investigated in which it was extended past the bottom plate and down onto the band joist to determine if significant resistance to the uplift present in walls without mechanical hold-down devices could be provided. Also, the effects of orienting the fibers of a 4 x 9 feet (1.2 x 2.7 m) panel in the alternate direction were examined. Average values of the parameters produced by walls sheathed with long panels either matched or exceeded those of its counterpart sheathed with 4 x 8 feet (1.2 x 2.4 m) panels in all configurations except the 10 feet (3.0 m) tall wall without hold-down devices. In fact, 4 x 9 feet (1.2 x 2.7 m) panels increased the performance of 9 feet (2.7 m) tall walls equipped with hold-down restraint significantly. Extending the long panels past the bottom plate and down onto the band joist improved the performance of both 8 and 9 feet (2.4 and 2.7 m) tall prescriptive shear walls significantly. Walls sheathed with panels made of fibers oriented in the alternate direction performed identically to those sheathed with panels of typical fiber orientation until the point of peak load. Once peak load was reached, walls sheathed with panels of alternate oriented fibers failed in a more sudden and brittle manner. / Master of Science
20

Indirect investigations of the Atlantic Meridional Overturning changes in the South Atlantic Ocean in numerical models for the 20th century / Indirect investigations of the Atlantic Meridional Overturning changes in the South Atlantic Ocean in numerical models for the 20th century

Signorelli, Natália Tasso 29 August 2013 (has links)
The South Atlantic has a relevant role on the AMOC variability as it includes two main conduits of its upper-ocean return flow: the NBUC and the IWBC that carry, mainly, the SACW and the AAIW and are originated from the bifurcation of the SEC. One of the hypotheses of this work is that analyzing the bifurcation variability it is possible to get an index of the AMOC changes. Another hypothesis is that in a global warming scenario, changes in the hydrological cycle would drive modifications in the water masses that are part of the AMOC, and thus, contribute to its variability. Four global model results were used, with different forcing and spatial resolution. Results show that changes in the bifurcation are linked to modications in the currents both caused by variations in the wind stress curl. Good correlations were found between the SEC bifurcation at the surface and the AMOC. The NBUC seems to be the link between them. Shallowing of the SACW core is related to an increase of the salinity on neutral surfaces. The AAIW is occupying less space in the water column due to an increasing of the salinity in the neutral surfaces at 11°S, while the opposite happens at 27°S / The South Atlantic has a relevant role on the AMOC variability as it includes two main conduits of its upper-ocean return flow: the NBUC and the IWBC that carry, mainly, the SACW and the AAIW and are originated from the bifurcation of the SEC. One of the hypotheses of this work is that analyzing the bifurcation variability it is possible to get an index of the AMOC changes. Another hypothesis is that in a global warming scenario, changes in the hydrological cycle would drive modifications in the water masses that are part of the AMOC, and thus, contribute to its variability. Four global model results were used, with different forcing and spatial resolution. Results show that changes in the bifurcation are linked to modications in the currents both caused by variations in the wind stress curl. Good correlations were found between the SEC bifurcation at the surface and the AMOC. The NBUC seems to be the link between them. Shallowing of the SACW core is related to an increase of the salinity on neutral surfaces. The AAIW is occupying less space in the water column due to an increasing of the salinity in the neutral surfaces at 11°S, while the opposite happens at 27°S

Page generated in 0.058 seconds