• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Defect study of zinc oxide bulk materials by positron lifetime spectroscopy

So, Chun-keung. January 2008 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2008. / Also available in print.
2

Continuous hydrothermal synthesis and crystallization of magnetic oxide nanoparticles

Holm, Linda Josefine 05 1900 (has links)
No description available.
3

Factors affecting the dislocation substructure in deformed magnesium oxide

Elkington, Walter E. January 1962 (has links)
Thesis (M.S.)--University of California, Berkeley, 1962. / "UC-34 Physics" -t.p. "TID-4500 (17th Ed.)" -t.p. Includes bibliographical references (p. 15).
4

Atmospheric Pressure Chemical Vapor Deposition of Functional Oxide Materials for Crystalline Silicon Solar Cells

Davis, Kristopher 01 January 2015 (has links)
Functional oxides are versatile materials that can simultaneously enable efficiency gains and cost reductions in crystalline silicon (c-Si) solar cells. In this work, the deposition of functional oxide materials using atmospheric pressure chemical vapor deposition (APCVD) and the integration of these materials into c-Si solar cells are explored. Specifically, thin oxide films and multi-layer film stacks are utilized for the following purposes: (1) to minimize front surface reflectance without increasing parasitic absorption within the anti-reflection coating(s); (2) to maximize internal back reflectance of rear passivated cells, thereby increasing optical absorption of weakly absorbed long wavelength photons (? > 900 nm); (3) to minimize recombination losses by providing excellent surface passivation; and (4) to improve doping processes during cell manufacturing (e.g., emitter and surface field formation) by functioning as highly controllable dopant sources compatible with in-line diffusion processes. The oxide materials deposited by APCVD include amorphous and polycrystalline titanium oxide, aluminum oxide, boron-doped aluminum oxide, silicon oxide, phosphosilicate glass, and borosilicate glass. The microstructure, optical properties, and electronic properties of these films are characterized for different deposition conditions. Additionally, the impact of these materials on the performance of different types of c-Si solar cells is presented using both simulated and experimental current-voltage curves.
5

Synthesis And Investigation Of Transition Metal Oxides Towards Realization Of Novel Materials Properties

Ramesha, K 07 1900 (has links)
Transition metal compounds, especially the oxides, containing dn (0 ≤ n ≤ 10) electronic configuration, constitute the backbone of solid state/materials chemistry aimed at realization of novel materials properties of technological importance. Some of the significant materials properties of current interest are spin-polarized metallic ferromagnetism, negative thermal expansion, second harmonic nonlinear optical (NLO) susceptibility, fast ionic and mixed electronic/ionic conductivity for application in solid state batteries, and last but not the least, high-temperature superconductivity. Typical examples for each one of these properties could be found among transition metal oxides. Thus, alkaline-earth metal (A) substituted rare-earth (Ln) manganites, Lnı.xAxMnΟ3, are currently important examples for spin-polarized magnetotransport, ZrV2O7 and ZrW2O8 for negative thermal expansion coefficient, KTiOPO4 and LiNbO3 for second harmonic NLO susceptibility, (Li, La) TiO3 and LiMn2O4 for fast-ionic and mixed electronic/ionic conductivity respectively, and the whole host of cuprates typified by YBa2Cu3O7 for high Tc superconductivity. Solid state chemists constantly endeavour to obtain structure-property relations of solids so as to be able to design better materials towards desired properties. Synthesis coupled with characterization of structure and measurement of relevant properties is a common strategy that chemists adopt for this task. The work described in this thesis is based on such a broad-based chemists' approach towards understanding and realization of novel materials properties among the family of metal oxides. A search for metallic ferro/ferrimagnetism among the transition metal perovskite oxides, metallicity and possibility of superconductivity among transition-metal substituted cuprates and second order NLO susceptibility among metal oxides containing d° cations such as Ti(IV), V(V) and Nb(V) - constitute the main focus of the present thesis. New synthetic strategies that combine the conventional ceramic approach with the chemistry-based 'soft1 methods have been employed wherever possible to prepare the materials. The structures and electronic properties of the new materials have been probed by state-of-the art techniques that include powder X-ray diffraction (XRD) together with Rietveld refinement, electron diffraction, thermogravimetry, measurement of magnetic susceptibility (including magnetoresistance), Mossbauer spectroscopy and SHG response (towards 1064 nm laser radiation), besides conventional analytical techniques for determination of chemical compositions. Some of the highlights of the present thesis are: (i) synthesis of new mixed valent [Mn(III)/Mn(IV)] perovskite-type manganites, ALaMn2O6-y (A = K, Rb) and ALaBMn3O9_y (A = Na, K; B = Ca, Sr) that exhibit ferromagnetism and magnetoresistance; (ii) investigation of a variety of ferrimagnetic double-perovskites that include ALaMnRuO6 (A = Ca, Sr, Ba) and ALaFeVO6 (A = Ca, Sr) and A2FeReO6 (A = Ca, Sr, Ba) providing new insights into the occurrence of metallic and nonmetallic ferrimagnetic behaviour among this family of oxides; (iii) synthesis of new K2NiF4-type oxides, La2-2xSr2XCui.xMxO4 (M = Ti, Mn, Fe, Ru) and investigation of Cu-O-M interaction in two dimension and (iv) identification of the structural rnotif(s) that gives rise to efficient second order NLO optical (SHG) response among d° oxides containing Ti(IV), V(V), Nb(V) etc., and synthesis of a new SHG material, Ba2-xVOSi2O7 having the fresnoite structure. The thesis consists of five chapters and an appendix, describing the results of the investigations carried out by the candidate. A brief introduction to transition metaloxides, perovskite oxides in particular, is presented in Chapter 1. Attention is focused on the structure and properties of these materials. Chapter 2 describes the synthesis and investigation of two series of anion-deficient perovskite oxides, ALaMn2O6-y (A = K, Rb, Cs) and ALaBMn3O9_y (A = Na, K; B = Ca, Sr). ALaMn2O6-y (A = K, Rb, Cs) series of oxides adopt 2 ap x 2 ap superstructure for K and Rb phases and √2 av x √2 ap x 2 ap superstructure (ap = perovskite subcell) for the Cs phase. Among ALaBMn3O9-y phases, the A = Na members adopt a new kind of perovskite superstructure, ap x 3 ap, while the A = K phases do not reveal an obvious superstructure of the perovskite. All these oxides are ferromagnetic (Tc ~ 260-325 K) and metallic exhibiting a giant magnetoresistance behaviour similar to alkaline earth metal substituted lanthanum manganites, Lai_xAxMnO3. However, unlike the latter, the resistivity peak temperature Tp for all the anion-deficient manganites is significantly lower than Tc. In Chapter 3, we have investigated structure and electronic properties of double-perovskite oxides, A2FeReO6 (A = Ca, Sr and Ba). The A = Sr, Ba phases are cubic (Fm3m) and metallic, while the A = Ca phase is monoclinic (P2yn) and nonmetallic. All the three oxides are ferrimagnetic with Tcs 315-385 K as reported earlier. A = Sr, Ba phases show a negative magnetoresistance (MR) (10-25 % at 5 T), while the Ca member does not show an MR effect. 57Fe Mossbauer spectroscopy shows that iron is present in the high-spin Fe3+ (S = 5/2) state in Ca compound, while it occurs in an intermediate state between high-spin Fe2+ and Fe3+ in the Ba compound. Monoclinic distortion and high covalency of Ca-O bonds appear to freeze the oxidation states at Fe+3/Re5+ in Ca2FeRe O6, while the symmetric structure and ionic Ba-O bonds render the FeReO6 array highly covalent and Ba2FeReO6 metallic. Mossbauer data for Sr2FeReO6 shows that the valence state of iron in this compound is intermediate between that in Ba and Ca compounds. It is likely that Sr2FeReO6 which lies at the boundary between metallic and insulating states is metastable, phase-seperating into a percolating mixture of different electronic states at the microscopic level. In an effort to understand the occurrence of metallicity and ferrimagnetism among double perovskites, we have synthesized several new members : ALaMnFeO6 (A = Ca, Sr, Ba), ALaMnRuO6 (A = Ca, Sr, Ba) and ALaVFeO6 (A = Ca, Sr) (Chapter 3). Electron diffraction reveals an ordering of Mn and Ru in ALaMnRuO6 showing a doubling of the primitive cubic perovskite cell, while ALaVFeO6 do not show an ordering. ALaMnRuOs are ferrimagnetic (Tcs ~ 200-250 K) semiconductors, but ALaVFeO6 oxides do not show a long range magnetic ordering . The present work together with the previous work on double perovskites shows that only a very few of them exhibit both metallicity and ferrimagnetism, although several of them are ferrimagnetic. For example, among the series Ba2MReO6 (M = Mn, Fe, Co, Ni), only the M = Fe oxide is both metallic and ferrimagnetic, while M = Mn and Ni oxides are ferrimagnetic semiconductors. Similarly, A2CrMoO6 (A = Ca, Sr), A2CrRe06 (A = Ca, Sr), and ALaMnRuO6 (A = Ca, Sr, Ba) are all ferrimagnetic but not metallic. While ferrimagnetism of double perovskites arise from an antiferromagnetic coupling of B and B' spins through the B-O-B' bridges, the occurrence of metallicity seems to require precise matching of the energies of d-states of B and B' cations and a high covalency in the BB'O6 array that allows a facile electron-transfer between B and B', Bn++B’m+↔B(n+1)++B’(m-1)+ without an energy cost, just as occurs in ReO3 and other metallic ABO3 perovskites. In an effort to understand the Cu-O-M (M = Ti, Mn, Fe, Ru) electronic interaction in two dimension, we have investigated K2N1F4 oxides of the general formula La2-2xSr2XCui.xMxO4 (M = Ti, Mn, Fe or Ru). These investigations are described in Chapter 4. For M = Ti, only the x = 0.5 member could be prepared, while for M = Mn and Fe, the composition range is 0 < x < 1.0, and for M = Ru, the composition range is 0 < x ≤ 0.5. There is no evidence for ordering of Cu(II) and M(IV) in the x = 0.5 members. While the members of the M = Ti, Mn and Ru series are semiconducting/insulating, the members of the M = Fe series are metallic, showing a broad metal-semiconductor transition around 100 K for 0 < x ≤ 0.15 that is possibly related to a Cu(II)-O-Fe(IV) < > Cu(III)-O-Fe(III) valence degeneracy. Increasing the strontium content at the expense of lanthanum in La2-2xSr2XCui.xFexO4 for x ≤ 0.20 renders the samples metallic but not superconducting. In a search for inorganic oxide materials showing second order nonlinear optical (NLO) susceptibility, we have investigated several borates, silicates and phosphates containing /ram-connected MO6 octahedral chains or MO5 square-pyramids, where M = d°: Ti(IV), Nb(V) or Ta(V). Our investigations, which are described in Chapter 5, have identified two new NLO structures: batisite, Na2Ba(TiO)2Si4O12, containing trans-connectd TiO6 octahedral chains, and fresnoite, Ba2TiOSi2O7, containing square-pyramidal T1O5. Investigation of two other materials containing square-pyramidal TiO5, viz., Cs2TiOP2O7 and Na4Ti2Si8O22. 4H2O, revealed that isolated TiO5 square-pyramids alone do not cause a second harmonic generation (SHG) response; rather, the orientation of T1O5 units to produce -Ti-O-Ti-O- chains with alternating long and short Ti-0 distances in the fresnoite structure is most likely the origin of a strong SHG response in fresnoite. Indeed, we have been able to prepare a new fresnoite type oxide, Ba2.xVOSi2O7 (x ~ 0.5) that shows a strong SHG response, confirming this hypothesis. In the Appendix, we have described three synthetic strategies that enabled us to prepare magnetic and NLO materials. We have shown that the reaction CrO3 + 2 NH4X > CrO2 + 2 NH3 + H2O + X2 (X = Br, I), which occurs quantitatively at 120-150 °C, provides a convenient method for the synthesis of CrO2. Unlike conventional methods, the method described here does not require the use of high pressure for the synthesis of this technologically important material. For the synthesis of magnetic double perovskites, we have developed a method that involves reaction of basic alkali metal carbonates with the acidic oxides (e.g. Re2O7) first, followed by reaction of this precursor oxide with the required transition metal/transition metal oxide (e.g. Fe/Fe2O3). By this method we have successfully prepared single-phase perovskite oxides, A2FeReO6, ACrMoO6 and ALaFeVO6. We have prepared the new NLO material Ba2_xV0Si207 from Ba2VOSi2O7 by a soft chemical redox reaction involving the oxidation of V(IV) to V(V) using Br2 in CH3CN/CHCI3. Ba2V0Si207 + 1/2 Br2 > Bai.5V0Si207 + 1/2 BaBr2. The work presented in this thesis was carried out by the candidate as part of the Ph.D. training programme. He hopes that the studies reported here will constitute a worthwhile contribution to the solid state chemistry of transition metal oxides and related materials.
6

Hochdruckkristallzüchtung ausgewählter Oxidverbindungen

Wizent, Nadja 13 October 2009 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Kristallzüchtung von Verbindungen, die extreme Bedingungen erfordern und deren Optimierung. Neben qualitativ hochwertigen Ausgangssubstanzen kommen dabei die Verweindung von Gasgemischen und von Hochdruck in der Kristallzüchtungskammer sowie geringe Ziehgeschwindigkeiten im Bereich von &amp;lt;0,4 mm/h zum Einsatz. Der Effekt von Hochdruck, insbesondere Sauerstoffhochdruck bis zu 150 bar, wurde während der Züchtung von Oxiden mit dem tiegelfreien Zonenschmelzverfahren, auf die Zusammensetzung und Kristallqualität untersucht. Im Gegensatz zu anderen Verfahren kommt es bei dieser Methode zu keinen Verunreinigungen durch Tiegelmaterial. Des Weiteren steht die Schmelze in direktem Kontakt zur Atmosphäre und kann mit dieser wechselwirken. Trotz der großen und interessanten Veränderungen die sich dadurch ergeben, gibt es hierzu bisher sehr wenige Forschungsaktivitäten. Dies kann damit erklärt werden, dass bisher die Möglichkeiten fehlten, solche Experimente durchzuführen. Um die genannten Züchtungsbedingungen zu realisieren, müssen entsprechende Anlagen bereitstehen. Ein Bestandteil dieser Arbeit war die Mitarbeit am Design sowie an den Messungen und der Erprobung von Funktionselementen für eine neu konzipierte Kristallzüchtungsanlage für Hochdruckversuche bis 150 bar.
7

Hochdruckkristallzüchtung ausgewählter Oxidverbindungen

Wizent, Nadja 22 September 2009 (has links)
Die vorliegende Arbeit befasst sich mit der Kristallzüchtung von Verbindungen, die extreme Bedingungen erfordern und deren Optimierung. Neben qualitativ hochwertigen Ausgangssubstanzen kommen dabei die Verweindung von Gasgemischen und von Hochdruck in der Kristallzüchtungskammer sowie geringe Ziehgeschwindigkeiten im Bereich von &amp;lt;0,4 mm/h zum Einsatz. Der Effekt von Hochdruck, insbesondere Sauerstoffhochdruck bis zu 150 bar, wurde während der Züchtung von Oxiden mit dem tiegelfreien Zonenschmelzverfahren, auf die Zusammensetzung und Kristallqualität untersucht. Im Gegensatz zu anderen Verfahren kommt es bei dieser Methode zu keinen Verunreinigungen durch Tiegelmaterial. Des Weiteren steht die Schmelze in direktem Kontakt zur Atmosphäre und kann mit dieser wechselwirken. Trotz der großen und interessanten Veränderungen die sich dadurch ergeben, gibt es hierzu bisher sehr wenige Forschungsaktivitäten. Dies kann damit erklärt werden, dass bisher die Möglichkeiten fehlten, solche Experimente durchzuführen. Um die genannten Züchtungsbedingungen zu realisieren, müssen entsprechende Anlagen bereitstehen. Ein Bestandteil dieser Arbeit war die Mitarbeit am Design sowie an den Messungen und der Erprobung von Funktionselementen für eine neu konzipierte Kristallzüchtungsanlage für Hochdruckversuche bis 150 bar.
8

Exploring novel functionalities in oxide ion conductors with excess oxygen

Zhang, Yaoqing January 2011 (has links)
Functional materials, particularly metal oxides, have been the focus of much attention in solid state chemistry for many years and impact every aspect of modern life. The approach adopted in this thesis to access desirable functionality for enhanced fundamental understanding is via modifying existing materials by deploying reducing synthetic procedures. This work spans several groups of inorganic crystalline materials, but is unified by the development of new properties within host compounds of particular relevance to solid oxide fuel cell technology, which allow interstitial oxide ion conduction at elevated temperatures. The Ca₁₂Al₁₄O₃₂e₂ electride was successfully synthesized by replacing the mobile extra-framework oxygen ions with electrons acting as anions. The high concentration of electrons in the C12A7 electride gives rise to an exceptionally high electronic conductivity of up to 245 S cm⁻¹ at room temperature. Making use of the high density of electrons in Ca₁₂Al₁₄O₃₂e₂ electride, the strong N-N bonds in N₂ was found to be broken when heating Ca₁₂Al₁₄O₃₂e₂ in a N₂ atmosphere. A reaction between silicate apatites and the titanium metal yielded another completely new electride material La₉.₀Sr₁.₀(SiO₄)₆O₂.₄e₀.₂ which was found to be a semiconductor. To fully understand the role of oxygen interstitials in silicate apatites, high-resolution transmission electron microscopy (HRTEM) was employed as the main technique in probing how the oxygen nonstoichiometry is accommodated at the atomic level. Atomic-resolution imaging of interstitial oxygen in La₉.₀Sr₁.₀(SiO₄)₆O₂.₅ proved to be a success in this thesis. Substitution of oxygen in 2a and interstitial sites with fluoride ions in La[subscript(8+y)]Sr[subscript(2- z)](SiO₄)₆O[subscript(2+(3y-2z)/2)] (0<y<2, 0<z<2) could be an approach to enriching the functionalities in the apatite structure. A wide range of fluoride substitution levels was tolerated in La[subscript(10-x)]Sr[subscript(x)](SiO₄)₆O[subscript(3-1.5x)]F[subscript(2x)] (x= 0.67, 1, 1.5, 2) and AC impedance measurements were found in support of a tentative conclusion that fluoride ions could be mobile in fluorinated apatites. The last part of this thesis was focused on a new class of fast oxide ion conductors based on Ge₅P₆O₂₅ whose performance was superior to both La₉.₀Sr₁.₀(SiO₄)₆O₂.₅ and Ca₁₂Al₁₄O₃₃ in the low temperature range.

Page generated in 0.087 seconds