Spelling suggestions: "subject:"oxylipins"" "subject:"perilipin""
1 |
Studies on the Roles of Translationally Recoded Proteins from Cyclooxygenase-1 and Nucleobindin Genes in AutophagyLee, Jonathan J. 01 June 2015 (has links)
Advances in next-generation sequencing and ribosomal profiling methods highlight that the proteome is likely orders of magnitude larger than previously thought. This expansion potentially occurs through translational recoding, a process that results in the expression of multiple variations of a protein from a single messenger RNA. Our laboratory demonstrated that cyclooxygenase-3/1b (COX-3/1b), a frameshifted, intron-1-retaining, alternative splice variant from the COX-1 gene, is multiply recoded, which results in the translation of at least seven different COX-3 proteins. Two of the recoded COX-3 proteins that we identified are active prostaglandin synthases and are inhibited by non-steroidal anti-inflammatory drugs (NSAIDs). Here we show that the other non-prostaglandin-generating recoded COX-3 proteins perform new roles in innate immunity, a process in which COX are known to generally function. Our analyses determined that these recoded COX-3 proteins bind at or near the amino-terminal region of ATG9a, a critical regulator of both canonical (i.e. digestive autophagy associated with mTORc inhibition and nutrient deprivation) and non-canonical (i.e. xenophagy involved in the innate immune response to invading organisms) autophagy. We further show that this process requires mTORc signaling activity, which opposes the digestive pathway. As a final confirmation of the biological relevance of these recoded COX-3 proteins and their central role in xenophagy, we demonstrate that expression of these COX-3 proteins in an encephalomyocarditis virus infection model system differentially affects infectious virion production. These COX-3 proteins also associate with recoded cytosolic nucleobindin around large, innate immune-related, large LC3-II positive structures (LLPSs). Through mutagenizing catalytic residues of recoded COX-3 proteins and drug assays, we determine LLPS formation is dependent on oxylipin generation.
|
2 |
Plasma and rectal mucosal oxylipin levels during aspirin and eicosapentaenoic acid treatment in the seAFOod polyp prevention trialFuller, H., Race, Amanda D., Fenton, H., Burke, L., Downing, A., Williams, E.A., Rees, C.J., Brown, L.C., Loadman, Paul, Hull, M.A. 05 October 2023 (has links)
Yes / Aspirin and eicosapentaenoic acid (EPA) have colorectal polyp prevention activity, alone and in combination. This study measured levels of plasma and rectal mucosal oxylipins in participants of the seAFOod 2 × 2 factorial, randomised, placebo-controlled trial, who received aspirin 300 mg daily and EPA 2000 mg free fatty acid, alone and in combination, for 12 months.
Resolvin (Rv) E1, 15-epi-lipoxin (LX) A4 and respective precursors 18-HEPE and 15-HETE (with chiral separation) were measured by ultra-high performance liquid chromatography-tandem mass spectrometry in plasma taken at baseline, 6 months and 12 months, as well as rectal mucosa obtained at trial exit colonoscopy at 12 months, in 401 trial participants.
Despite detection of S- and R- enantiomers of 18-HEPE and 15-HETE in ng/ml concentrations, RvE1 or 15‑epi-LXA4 were not detected above a limit of detection of 20 pg/ml in plasma or rectal mucosa, even in individuals randomised to both aspirin and EPA. We have confirmed in a large clinical trial cohort that prolonged (12 months) treatment with EPA is associated with increased plasma 18-HEPE concentrations (median [inter-quartile range] total 18-HEPE 0.51 [0.21-1.95] ng/ml at baseline versus 0.95 [0.46-4.06] ng/ml at 6 months [P
|
3 |
The structural basis for the catalytic specificity of manganese lipoxygenases : 3D structure analysis of the lipoxygenase of Magnaporthe oryzaeWennman, Anneli January 2015 (has links)
Lipoxygenases (LOX) catalyze regio- and stereospecific oxygenation of polyunsaturated fatty acids to hydroperoxides. These hydroperoxides are further metabolized to leukotrienes and lipoxins in mammals, and are involved in asthma and inflammation. LOX of animals and plants contain iron as catalytic metal (FeLOX). Filamentous fungi use both FeLOX, and manganese containing LOX (MnLOX). The role of LOX in fungi is still not known. This thesis focuses on expression of novel MnLOX, analyses of their reaction mechanism and products by HPLC-MS/MS, protein crystallization and analysis of the first MnLOX structure. MnLOX from G. graminis, M. salvinii, M. oryzae, F. oxysporum and C. gloeosporioides were expressed in Pichia pastoris, purified and characterized by HPLC-MS/MS. All MnLOX catalyzes suprafacial hydrogen abstraction and oxygen insertion. Replacement of one Ile to Phe in the active site of MnLOX of G. graminis could switch the mechanism from suprafacial to mainly antarafacial. MnLOX of F. oxysporum was interesting since it catalyzes oxygenation of linoleic acid to 11R- instead of the more common 11S-hydroperoxides. This feature could be attributed to a single Ser/Phe exchange in the active site. We found that Gg-MnLOX utilizes hydrogen tunneling in the reaction mechanism, but was slightly more temperature dependent than soybean FeLOX. It is an intriguing question why some fungal LOX use manganese and not iron as catalytic metal and whether the large redox potential of Mn2+/Mn3+ (1.5 V) can be tuned close to that of Fe2+/Fe3+ (0.77 V) for redox cycling and catalysis. We present crystallization conditions for two MnLOX, and the 2.07 Å crystal structure of MnLOX from M. oryzae, solved using sulfur and manganese single anomalous dispersion (SAD). The structure reveals a similar metal coordinating sphere as FeLOX but the metal ligand Asn473 was positioned on a short loop instead of a helix and formed interactions with a conserved Gln. This feature could be essential for the use of manganese as catalytic metal in LOX. We found three Phe residues that likely facilitate the suprafacial hydrogen abstraction and oxygen insertion for MnLOX. These findings provide new insight into the unique reaction mechanism of MnLOX.
|
4 |
ROLE OF THE PLANT-PATHOGEN CROSS TALKING IN FUSARIUM MYCOTOX IN PRODUCTION AND MASKING IN MAIZEGREGORI, ROSSELLA 19 February 2014 (has links)
In this work we investigated the in vivo and in vitro ecological conditions that can favour the fumonisin production, both free and hidden forms, in the maize-Fusarium verticillioides pathosystem. Samples of different maize hybrids have been collected from dough to the harvest maturity to follow the trend of fungal incidence and both fumonisin forms contamination, but also the changes in chemical composition. Differences in the level of contamination have been found among hybrids during the growing season. Furthermore, the production of fumonisins has been found correlated to the total lipids content, another parameter that changed during the growing season. This finding underlined the existence of a relationship between toxin contamination and fatty acids composition of the hybrids.
Recently the existence of a cross talk between plant and pathogen has been demonstrated, based on some oxidized signal molecules (oxylipins) produced from fatty acid precursors. This result was also confirmed by the molecular analysis on the in vitro pathosystem that showed differences in the activation of the genes involved in plant and fungal oxylipins production during the incubation time.
Also post-harvest contamination of maize was investigated in this study, with particular attention to the effects of the drying treatment, a common post-harvest practice aimed at decreasing the water availability, and to the storage capacity of a new low cost storage system, silo bag. The drying treatment was showed to affect fumonisins content, in particular an increased fumonisins contamination was detected after heat treatments. This increment seemed to be produced by chemical changes of matrix components, caused by high temperature, that produced the release of hidden fumonisin in free form.
Silo bags were shown to be an effective system to store cereals because no significant change occurred in fungi or toxins contamination during a 9-month storage. Therefore, being more flexible and less expensive than traditional store houses, they should be very useful for farmers.
|
5 |
<b>Evaluating Systemic Inflammation by Comparing Lipid Mediators and the Platelet and Plasma Proteome of Postpartum Dairy Cows</b>Jillian Michaela Grantz (18433119) 28 April 2024 (has links)
<p dir="ltr">Inflammation is a vital aspect of the immune response and functions to maintain homeostasis and protect the host against tissue injury or infection. However, excessive or prolonged inflammation can lead to health disorders and production losses in dairy cows. inflammation is a normal part of the tissue response during parturition. However, exacerbated systemic inflammation in the early postpartum has been associated with decreased milk production, decreased reproductive efficiency, and increased disease severity. Several processes contribute to systemic inflammation in dairy cows, such as liver oxidative stress, bacterial or endotoxin translocation during increased gastrointestinal permeability (e.g., lipopolysaccharide; LPS), and postpartum adipose tissue and skeletal muscle mobilization. However, there is limited knowledge of the mechanisms underlying systemic inflammation in postpartum dairy cows. Several studies have identified potent lipid mediators known as oxylipins as direct mediators of inflammation. Some differences have been identified in dairy cows when comparing the oxylipin profile throughout lactation and between cows suffering from different disorders. In our first study, we evaluated the plasma oxylipin profile of dairy cows suffering from systemic inflammation in the first week after parturition. Cows were classified into one of four systemic inflammation categories based on plasma haptoglobin (Hp) concentrations and plasma oxylipin profiles were identified by mass spectrometry. The results from this study identified several oxylipins of interest that warrant further research to confirm their presence in dairy cows with systemic inflammation and to evaluate their biological function associated with the postpartum inflammatory process. Endocannabinoids are soluble mediators associated with inflammation in humans, mouse models, and, more recently, dairy cows. While studies have demonstrated endocannabinoids to contribute to inflammation in the adipose tissue of dairy cows, no studies have evaluated the circulating presence of these mediators in cows suffering from systemic inflammation. Therefore, our second study sought to further evaluate the plasma oxylipin and endocannabinoid profiles of dairy cows suffering from systemic inflammation. In this study, we compared the oxylipin and endocannabinoid profiles of dairy cows categorized into high- and low-inflammation groups based on plasma Hp concentrations. We identified oxylipins associated with inflammation and found differences in the plasma endocannabinoid profile of high-inflammation cows compared to low-inflammation cows. Platelets are well understood for their function in hemostasis, though more recently, they have been studied for their ability to modulate the immune and inflammatory response. Presently, no studies exist elucidating the role of platelets on systemic inflammation in dairy cows. In addition to evaluating plasma oxylipin and endocannabinoid profiles in our second study, we determined if changes in platelets are associated with systemic inflammation in postpartum dairy cows. Proteomic analysis was completed on isolated platelets and plasma collected from dairy cows with high and low inflammation based on plasma Hp concentrations. Results from this study provide the first evidence demonstrating differences in the platelet and plasma proteomes between cows suffering from high inflammation and cows with low inflammation. The lipidomic and proteomic profiles described in these studies identified differences between cows suffering from systemic inflammation and apparently healthy cows. The results from these studies suggest platelets could contribute to an inflammatory state and have identified specific oxylipins, endocannabinoids, and proteins that may contribute to systemic inflammation in dairy cows by impairing the immune response or directly exerting an inflammatory function. More research is needed to fully understand the <i>in vitro </i>and <i>in vivo </i>function of the many lipid mediators and proteins identified in these studies and their ability to contribute to an exacerbated systemic inflammatory response in dairy cows.</p>
|
6 |
APOE genotype, eicosapentaenoic acid (EPA) supplementation and n-3 highly unsaturated fatty acid (HUFA) levels in patients with multiple colorectal polyps: A secondary analysis of the seAFOod polyp prevention trialSun, G., Davies, J.R., Mell, T., Harland, M., Saleh, R.M.H., Race, Amanda D., Loadman, Paul, Williams, E.A., Minihane, A.M., Hull, M.A. 29 August 2024 (has links)
Yes / Introduction: We examined the relationship between Apolipoprotein E (APOE) genotype and n-3 highly unsaturated
fatty acid (HUFA) levels in participants of the seAFOod trial, who were undergoing colonoscopy surveillance
after removal of colorectal polyps.
Methods: Baseline and on-treatment (eicosapentaenoic acid [EPA] 2 g daily or placebo for 6 months) levels of n-3
HUFAs, and plasma 18-hydroxyeicosapentaenoic acid (HEPE), were analysed according to APOE genotype
(based on polymorphisms rs429358 and rs7412) in 584 participants.
Results: Before treatment, APOE2/2 individuals had lower levels, and APOE4/4 participants had higher levels, of
n-3 HUFAs, including EPA, than APOE3/3 counterparts (P < 0.01 for the APOE2/2 versus APOE4/4 comparison).
After EPA supplementation, n-3 HUFA levels were not significantly different when stratified by APOE genotype,
although APOE4 carriers displayed lower plasma 18-HEPE levels than individuals without an APOE4 allele (P =
0.002).
Conclusions: APOE genotype is associated with differential n-3 HUFA and 18-HEPE levels in individuals with
multiple colorectal polyps. / This project (NIHR128210) was funded by the Efficacy and Mechanism Evaluation (EME) Programme, an MRC and NIHR partnership. The views expressed in this publication are those of the authors and not necessarily those of the MRC, NIHR or the Department of Health and Social Care. MAH is a NIHR Senior Investigator. MAH is supported by Cancer Research UK grant C23434/A24939.
|
7 |
Structure and function of A.nidulans PSI factor producing oxygenase AKoch, Christian 01 October 2012 (has links)
No description available.
|
8 |
Catalytic and Structural Properties of Heme-containing Fatty Acid Dioxygenases : Similarities of Fungal Dioxygenases and CyclooxygenasesGarscha, Ulrike January 2009 (has links)
7,8-Linoleate diol synthase (7,8-LDS) of the take-all pathogen of wheat, Gaeumannomyces graminis, converts linoleic acid to 8R-hydroperoxyoctadecadienoic acid (8-HPODE) by 8-dioxygenase activity (8-DOX), and further isomerizes the hydroperoxide to 7S,8S-dihydroxyoctadecadienoic acid (7,8-DiHODE) by hydroperoxide isomerase activity. Sequence alignment showed homology to prostaglandin H synthase (PGHS), and both enzymes share structural and catalytic properties. The 8-DOX of 7,8-LDS was successfully expressed in Pichia pastoris and in insect cells (Sf21). Site-directed mutagenesis confirmed His379 as the proximal heme ligand and Tyr376 as a residue, which forms a tyrosyl radical and initiates catalysis. Furthermore, mutagenesis suggested His203 could be the proposed distal histidine, and Tyr329 of catalytic relevance for substrate positioning at the active site. Aspergilli are ubiquitous environmental fungi. Some species, in particular Aspergillus fumigatus, are responsible for invasive aspergillosis, which is a life-threatening disease for immunocompromised patients. A. fumigatus and A. nidulans metabolized linoleic acid to 8R-HPODE, 10R-hydroperoxyoctadecadienoic acid (10R-HPODE), 5S,8R-dihydroxyoctadecadienoic acid, and 8R,11S-dihydroxyoctadecadienoic acid. When the genomes of certain Aspergilli strains were published, several species showed at least three homologous genes (ppoA, ppoB, ppoC- psi producing oxygenases) to 7,8-LDS and PGHS. Gene deletion identified PpoA as an enzyme with 8-DOX and 5,8-hydroperoxide isomerase activities, designated 5,8-LDS in homology to 7,8-LDS. In the same way, PpoC was identified as a 10-dioxygenase (10-DOX), which converts linoleic acid to 10R-HPODE. 10-DOX differs from LDS, since it dioxygenates linoleic acid at C-10, after hydrogen abstraction at C-8 and double bond migration. 10-DOX was cloned and expressed in insect cells. Leu384 and Val388 were found to be critical for dioxygenation at C-10. Mutation to the homologous residues of 5,8- and 7,8-LDS (Leu384Val, Val388Leu) increased oxygen insertion at C-8. LDS and 10-DOX are fusion proteins with a dioxygenase and a hydroperoxide isomerase (cytochrome P450) domain with a cysteine heme ligand. The P450 domain of 10-DOX lacked the crucial cysteine heme ligand and was without hydroperoxide isomerase activity. LDSs and 10-DOX are newly characterized heme containing fungal dioxygenases, with homology to PGHS of vertebrates. Their metabolites regulate reproduction, development, and act as signal molecules with the host after pathogen attack.
|
9 |
Expression of Manganese Lipoxygenase and Site-Directed Mutagenesis of Catalytically Important Amino Acids : Studies on Fatty Acid DioxygenasesCristea, Mirela January 2006 (has links)
<p>Polyunsaturated fatty acids can be bioactivated by two families of dioxygenases, which either contain non-heme iron (lipoxygenases) or heme (cyclooxygenases, linoleate diol synthases and α-dioxygenases).</p><p>Lipoxygenases and their products play important roles in the pathophysiology of plants and fungi. The only known lipoxygenase with catalytic manganese (Mn-lipoxygenase) is secreted by a devastating root pathogen of wheat, the Take-all fungus <i>Gaeumannomyces graminis</i>. Its mycelia also contains linoleate diol synthase (LDS), which can oxidize linoleic acid to sporulation hormones.</p><p>Mn-lipoxygenase belongs to the lipoxygenase gene family. Recombinant Mn-lipoxygenase was successfully expressed in the yeast <i>Pichia pastoris</i> with an expression level of 30 mg/L in fermentor culture. The tentative metal ligands of Mn-lipoxygenase were studied by site-directed mutagenesis. The results show that four residues His-274, His-278, His-462 and the C-terminal Val-602 likely coordinate manganese, as predicted by sequence alignments with Fe lipoxygenases.</p><p>Mn-lipoxygenase (~100 kDa) contains an Asp-Pro peptide bond in the N-terminal region, which appears to hydrolyze during storage and in the acidic media during Pichia expression to an active enzyme of smaller size, mini-Mn-lipoxygenase (~70 kDa). The active form of Mn-lipoxygenase can oxygenate fatty acids of variable chain length, suggesting that the fatty acids enter the catalytic site with the ω-end (“tail first”).</p><p>Mn-lipoxygenase is an <i>R</i>-lipoxygenase with a conserved Gly316 residue known as a determinant of stereospecificity in other <i>R/S</i> lipoxygenases. The Gly316Ala mutant showed an increased hydroperoxide isomerase activity and transformed 18:3n-3 and 17:3n-3 to epoxyalcohols.</p><p>The genome of the rice blast fungus, <i>Magnaporthe grisea</i>, contains putative genes of lipoxygenases and LDS. Mycelia of <i>M. grisea</i> were found to express LDS activity. This enzyme was cloned and sequenced and showed 65% amino acid identity with LDS from <i>G.graminis</i>. </p><p>Take-all and the rice blast fungi represent a constant threat to staple foods worldwide. Mn-lipoxygenase and LDS might provide new means to combat these pathogens.</p>
|
10 |
Expression of Manganese Lipoxygenase and Site-Directed Mutagenesis of Catalytically Important Amino Acids : Studies on Fatty Acid DioxygenasesCristea, Mirela January 2006 (has links)
Polyunsaturated fatty acids can be bioactivated by two families of dioxygenases, which either contain non-heme iron (lipoxygenases) or heme (cyclooxygenases, linoleate diol synthases and α-dioxygenases). Lipoxygenases and their products play important roles in the pathophysiology of plants and fungi. The only known lipoxygenase with catalytic manganese (Mn-lipoxygenase) is secreted by a devastating root pathogen of wheat, the Take-all fungus Gaeumannomyces graminis. Its mycelia also contains linoleate diol synthase (LDS), which can oxidize linoleic acid to sporulation hormones. Mn-lipoxygenase belongs to the lipoxygenase gene family. Recombinant Mn-lipoxygenase was successfully expressed in the yeast Pichia pastoris with an expression level of 30 mg/L in fermentor culture. The tentative metal ligands of Mn-lipoxygenase were studied by site-directed mutagenesis. The results show that four residues His-274, His-278, His-462 and the C-terminal Val-602 likely coordinate manganese, as predicted by sequence alignments with Fe lipoxygenases. Mn-lipoxygenase (~100 kDa) contains an Asp-Pro peptide bond in the N-terminal region, which appears to hydrolyze during storage and in the acidic media during Pichia expression to an active enzyme of smaller size, mini-Mn-lipoxygenase (~70 kDa). The active form of Mn-lipoxygenase can oxygenate fatty acids of variable chain length, suggesting that the fatty acids enter the catalytic site with the ω-end (“tail first”). Mn-lipoxygenase is an R-lipoxygenase with a conserved Gly316 residue known as a determinant of stereospecificity in other R/S lipoxygenases. The Gly316Ala mutant showed an increased hydroperoxide isomerase activity and transformed 18:3n-3 and 17:3n-3 to epoxyalcohols. The genome of the rice blast fungus, Magnaporthe grisea, contains putative genes of lipoxygenases and LDS. Mycelia of M. grisea were found to express LDS activity. This enzyme was cloned and sequenced and showed 65% amino acid identity with LDS from G.graminis. Take-all and the rice blast fungi represent a constant threat to staple foods worldwide. Mn-lipoxygenase and LDS might provide new means to combat these pathogens.
|
Page generated in 0.0258 seconds