Spelling suggestions: "subject:"dyadic analysis"" "subject:"chadic analysis""
1 |
On p-adic L-functions. / L-functionsJanuary 1990 (has links)
by Lee-Shing Ma. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1990. / Bibliography: leaves 119-122. / Chapter 1) --- INTRODUCTION --- p.1 / Chapter 2) --- P-ADIC DIRICHLET L-FUNCTION --- p.5 / Chapter §1. --- P-ADIC INTERPOLATION --- p.5 / Chapter §2. --- THE POWER SERIES METHOD --- p.11 / Chapter §3. --- MEASURE AND DISTRIBUTION --- p.18 / Chapter §4. --- IWASAWA' S METHOD --- p.29 / Chapter 3) --- P-ADIC L-FUNCTION OVER TOTALLY REAL FIELD --- p.40 / Chapter §1. --- COATE'S STATEMENTS --- p.40 / Chapter §2. --- P-ADIC L-FUNCTION OVER REAL QUADRATIC FIELD --- p.49 / Chapter §3. --- P-ADIC MODULAR FORM --- p.58 / Chapter §4. --- P-ADIC L-FUNCTION OVER TOTALLY REAL FIELD 。 --- p.65 / Chapter 4) --- GAMMA TRANSFORM AND P-ADIC L-FUNCTION --- p.79 / Chapter §1. --- FOURIER TRANSFORM AND r-TRANSFORM --- p.79 / Chapter §2. --- THE u-INVARIANT OF r-TRANSFORM --- p.84 / Chapter §3. --- THE RADIUS OF CONVERGENCE --- p.92 / Chapter 5) --- P-ADIC ARTIN L-FUNCTION --- p.100 / Chapter §1. --- THE MAIN CONJECTURE --- p.100 / Chapter §2. --- THE P-ADIC ARTIN CONJECTURE --- p.104 / Chapter §3. --- MORE ABOUT THE P-ADIC ARTIN CONJECTURE --- p.113 / BIBLIOGRAPHY --- p.119
|
2 |
p-adic deformation of Shintani cyclesShahabi, Shahab. January 2008 (has links)
No description available.
|
3 |
On the Picard functor in formal-rigid geometryLi, Shizhang January 2019 (has links)
In this thesis, we report three preprints [Li17a] [Li17b] and [HL17] the author wrote (the last one was written jointly with D. Hansen) during his pursuing of PhD at Columbia.
We study smooth proper rigid varieties which admit formal models whose special fibers are projective. The main theorem asserts that the identity components of the associated rigid Picard varieties will automatically be proper. Consequently, we prove that non-archimedean Hopf varieties do not have a projective reduction. The proof of our main theorem uses the theory of moduli of semistable coherent sheaves.
Combine known structure theorems for the relevant Picard varieties, together with recent advances in p-adic Hodge theory, We then prove several related results on the low-degree Hodge numbers of proper smooth rigid analytic varieties over p-adic fields.
|
4 |
Two topics in p-adic approximationLaohakosol, Vichian. January 1978 (has links) (PDF)
Bibliographies: leaves ii & 146-150.
|
5 |
Using p-adic valuations to decrease computational errorLimmer, Douglas J. 08 June 1993 (has links)
The standard way of representing numbers on computers gives rise to errors
which increase as computations progress. Using p-adic valuations can reduce
error accumulation. Valuation theory tells us that p-adic and standard valuations
cannot be directly compared. The p-adic valuation can, however, be used in
an indirect way. This gives a method of doing arithmetic on a subset of the
rational numbers without any error. This exactness is highly desirable, and can
be used to solve certain kinds of problems which the standard valuation cannot
conveniently handle. Programming a computer to use these p-adic numbers is
not difficult, and in fact uses computer resources similar to the standard floating-point
representation for real numbers. This thesis develops the theory of p-adic
valuations, discusses their implementation, and gives some examples where p-adic
numbers achieve better results than normal computer computation. / Graduation date: 1994
|
6 |
Two topics in p-adic approximation /Laohakosol, Vichian. January 1978 (has links) (PDF)
Thesis (M. Sc.)--University of Adelaide, 1979. / Bibliographies: leaves ii & 146-150.
|
7 |
Propriétés arithmétiques des applications miroir / Arithmetic properties of mirror mapsDelaygue, Eric 06 September 2011 (has links)
Nous donnons une condition nécessaire et suffisante pour que les coefficients de Taylor à l'origine de séries en plusieurs variables $q_i({mathbf z})=z_iexp(G_i({mathbf z})/F({mathbf z}))$ soient entiers, avec ${mathbf z}=(z_1,dots,z_d)$ et où $F({mathbf z})$ et $G_i({mathbf z})+log(z_i)F({mathbf z})$, $i=1,dots,d$, sont des solutions particulières de certains $A$-systèmes d'équations différentielles linéaires. Ce critère est basé sur les propriétés analytiques de l'application de Landau (classiquement associée aux suites de quotients de factorielles de formes linéaires). Pour démontrer ce critère, nous généralisons entre autres une version en plusieurs variables d'un théorème de Dwork concernant les congruences formelles entre séries formelles, démontrée par Krattenthaler et Rivoal dans og Multivariate $p$-adic formal congruences and integrality of Taylor coefficients of mirror maps fg [arXiv:0804.3049v3, math.NT]. Ce critère en plusieurs variables implique l'intégralité des coefficients de Taylor de nouvelles applications miroir d'une seule variable dans og Tables of Calabi--Yau equations fg [arXiv:math/0507430v2, math.AG] de Almkvist, van Enckevort, van Straten et Zudilin. Dans le cas particulier d'une variable, nous affinons notre critère et démontrons l'intégralité des coefficients de Taylor de racines d'applications miroir. Cela nous permet de démontrer une conjecture de Zhou énoncée dans og Integrality properties of variations of Mahler measures fg [arXiv:1006.2428v1 math.AG]. / We give a necessary and sufficient condition for the integrality of the Taylor coefficients at the origin of formal power series $q_i({mathbf z})=z_iexp(G_i({mathbf z})/F({mathbf z}))$, with ${mathbf z}=(z_1,dots,z_d)$ and where $F({mathbf z})$ and $G_i({mathbf z})+log(z_i)F({mathbf z})$, $i=1,dots,d$ are particular solutions of some $A$-systems of differential equations. This criterion is based on the analytical properties of Landau's function (which is classically associated to the sequences of factorial ratios). One of the techniques used to prove this criterion is a generalization of a version of a theorem of Dwork on the formal congruences between formal series, proved by Krattenthaler and Rivoal in og Multivariate $p$-adic formal congruences and integrality of Taylor coefficients of mirror maps fg [arXiv:0804.3049v3, math.NT]. This criterion involves the integrality of the Taylor coefficients of new univariate mirror maps listed in og Tables of Calabi--Yau equations fg [arXiv:math/0507430v2, math.AG] by Almkvist, van Enckevort, van Straten and Zudilin. In the particular case of one variable, we refine our criterion and demonstrate the integrality of the Taylor coefficients of roots of mirror maps. This allows us to prove a conjecture stated by Zhou in og Integrality properties of variations of Mahler measures fg [arXiv:1006.2428v1 math.AG]. STAR Date de soutenance : 6 septembre 2011 Thèse sur travaux: non
|
8 |
Some Diophantine ProblemsJanuary 2019 (has links)
abstract: Diophantine arithmetic is one of the oldest branches of mathematics, the search
for integer or rational solutions of algebraic equations. Pythagorean triangles are
an early instance. Diophantus of Alexandria wrote the first related treatise in the
fourth century; it was an area extensively studied by the great mathematicians of the seventeenth century, including Euler and Fermat.
The modern approach is to treat the equations as defining geometric objects, curves, surfaces, etc. The theory of elliptic curves (or curves of genus 1, which are much used in modern cryptography) was developed extensively in the twentieth century, and has had great application to Diophantine equations. This theory is used in application to the problems studied in this thesis. This thesis studies some curves of high genus, and possible solutions in both rationals and in algebraic number fields, generalizes some old results and gives answers to some open problems in the literature. The methods involve known techniques together with some ingenious tricks. For example, the equations $y^2=x^6+k$, $k=-39,\,-47$, the two previously unsolved cases for $|k|<50$, are solved using algebraic number theory and the ‘elliptic Chabauty’ method. The thesis also studies the genus three quartic curves $F(x^2,y^2,z^2)=0$ where F is a homogeneous quadratic form, and extend old results of Cassels, and Bremner. It is a very delicate matter to find such curves that have no rational points, yet which do have points in odd-degree extension fields of the rationals.
The principal results of the thesis are related to surfaces where the theory is much less well known. In particular, the thesis studies some specific families of surfaces, and give a negative answer to a question in the literature regarding representation of integers n in the form $n=(x+y+z+w)(1/x+1/y+1/z+1/w).$ Further, an example, the first such known, of a quartic surface $x^4+7y^4=14z^4+18w^4$ is given with remarkable properties: it is everywhere locally solvable, yet has no non-zero rational point, despite having a point in (non-trivial) odd-degree extension fields of the rationals. The ideas here involve manipulation of the Hilbert symbol, together with the theory of elliptic curves. / Dissertation/Thesis / Doctoral Dissertation Mathematics 2019
|
9 |
Calcul effectif sur les courbes hyperelliptiques à réduction semi-stable / Explicit computation on hyperelliptic curve with semi-stable reductionZiegler, Yvan 05 June 2019 (has links)
Dans cette thèse nous étudions la filtration par le poids sur la cohomologie de De Rham d’une courbe hyperelliptique C définie sur une extension finie de Qp et à réduction semi-stable. L’objectif est de fournir des algorithmes calculant explicitement, étant donné une équation de C, les bases des crans de la filtration par le poids ainsi que la matrice de l’accouplement de Poincaré. Dans le premier chapitre, nous mettons en place des outils relatifs à la cohomologie de De Rham algébrique de la courbe hyperelliptique. Nous construisons une base adaptée de la cohomologie de De Rham de C, nous établissons une formule explicite pour le cup-produit et la trace, et enfin nous proposons un algorithme calculant la matrice de l’accouplement de Poincaré. Le deuxième chapitre est consacré à la description explicite de la flèche induite par l’inclusion du tube d’un point double sur les espaces de cohomologie. C’est l’ingrédient essentiel pour pouvoir décrire la filtration par le poids sur la cohomologie de De Rham de C. À cette fin nous nous plaçons dans le cadre de la géométrie analytique à la Berkovich et nous introduisons puis développons les notions de point résiduellement singulier standard et de forme apparente de l’équation de la courbe. Dans le troisième et dernier chapitre, nous faisons la synthèse des résultats obtenus et achevons la description de la filtration par le poids. Enfin, nous donnons les algorithmes calculant les bases de Fil0 et Fil1. Pour les algorithmes obtenus dans la thèse nous proposons une implémentation en sage, ainsi que des exemples concrets sur des courbes de genre un et deux. / In this thesis we study the weight filtration on the De Rham cohomology of an hyperelliptic curve C defined over a finite extension of Qp and with semi-stable reduction. The goal is to provide algorithms computing explicitly, given an equation of C, the basis of the weight filtration’s spaces as well as the matrix of the Poincaré pairing. In the first chapter we introduce tools related to the algebraic De Rham cohomology of the hyperelliptic curve. We build a suitable basis of the De Rham cohomology of C, we establish explicit formulae for the cup-product and the trace, and we give an algorithm computing the matrix of the Poincaré pairing. The second chapter is dedicated to the explicit description of the morphism induced by the inclusion of the tube of a double point on the cohomology spaces. It is the main ingredient that allows us to describe the weight filtration on the De Rham cohomology of C. To achieve that, we use the framework of the Berkovitch analytical geometry. We introduce and then we develop the notion of standard residually singular points and the notion of apparent form of the curve’s equation. In the third and last chapter, we synthesize all the results and we complete the description of the weight filtration. Finally, we give the algorithms that compute the basis of Fil0 and Fil1. For each of our algorithm, we propose a sage implementation and concrete examples on genus one and two curves.
|
10 |
Properties of p-adic C^k DistributionsWaller, Bradley A. January 2013 (has links)
No description available.
|
Page generated in 0.058 seconds