• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polynomials that are Integer-Valued on the Fibonacci Numbers

Scheibelhut, Kira 06 August 2013 (has links)
An integer-valued polynomial is a polynomial with rational coefficients that takes an integer value when evaluated at an integer. The binomial polynomials form a regular basis for the Z-module of all integer-valued polynomials. Using the idea of a p-ordering and a p-sequence, Bhargava describes a similar characterization for polynomials that are integer-valued on some subset of the integers. This thesis focuses on characterizing the polynomials that are integer-valued on the Fibonacci numbers. For a certain class of primes p, we give a formula for the p-sequence of the Fibonacci numbers and an algorithm for finding a p-ordering using Coelho and Parry’s results on the distribution of the Fibonacci numbers modulo powers of primes. Knowing the p-sequence, we can then find a p-local regular basis for the polynomials that are integer-valued on the Fibonacci numbers using Bhargava’s methods. A regular basis can be constructed from p-local bases for all primes p.

Page generated in 0.0785 seconds