• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FXR-Induced Secretion of FGF15/19 Inhibits CYP27 Expression in Cholangiocytes Through p38 Kinase Pathway

Jung, Dongju, York, J. Philippe, Wang, Li, Yang, Chaofeng, Zhang, Aijun, Francis, Heather L., Webb, Paul, McKeehan, Wallace L., Alpini, Gianfranco, LeSage, Gene D., Moore, David D., Xia, Xuefeng 01 January 2014 (has links)
Cholangiocytes, bile duct lining cells, actively adjust the amount of cholesterol and bile acids in bile through expression of enzymes and channels involved in transportation and metabolism of the cholesterol and bile acids. Herein, we report molecular mechanisms regulating bile acid biosynthesis in cholangiocytes. Among the cytochrome p450 (Cyp) enzymes involved in bile acid biosynthesis, sterol 27-hydroxylase (Cyp27) that is the rate-limiting enzyme for the acidic pathway of bile acid biosynthesis expressed in cholangiocytes. Expression of other Cyp enzymes for the basic bile acid biosynthesis was hardly detected. The Cyp27 expression was negatively regulated by a hydrophobic bile acid through farnesoid X receptor (FXR), a nuclear receptor activated by bile acid ligands. Activated FXR exerted the negative effects by inducing an expression of fibroblast growth factor 15/19 (FGF15/19). Similar to its repressive function against cholesterol 7α-hydroxylase (Cyp7a1) expression in hepatocytes, secreted FGF15/19 triggered Cyp27 repression in cholangiocytes through interaction with its cognate receptor fibroblast growth factor receptor 4 (FGFR4). The involvements of FXR and FGFR4 for the bile acid-induced Cyp27 repression were confirmed in vivo using knockout mouse models. Different from the signaling in hepatocytes, wherein the FGF15/19-induced repression signaling is mediated by c-Jun N-terminal kinase (JNK), FGF15/19-induced Cyp27 repression in cholangiocytes was mediated by p38 kinase. Thus, the results collectively suggest that cholangiocytes may be able to actively regulate bile acid biosynthesis in cholangiocytes and even hepatocyte by secreting FGF15/19. We suggest the presence of cholangiocyte-mediated intrahepatic feedback loop in addition to the enterohepatic feedback loop against bile acid biosynthesis in the liver.
2

Vliv acyklických nukleosidfosfonátů PMEG a PMEDAP na p38 kinasovou signalizaci v lidských leukemických buňkách / The influence of acyclic nucleotide phosphonates PMEG and PMEDAP on p38 kinase signaling in human leukemic cells

Nejedlá, Michaela January 2010 (has links)
PMEG [9-(2-phosphonomethoxyethyl)guanine] and PMEDAP [9-phosphonomethoxy- ethyl)-2,6-diaminopurine] are acyclic nucleoside phosphonates possessing cytotoxic properties. Antiproliferative effect of PMEG was demonstrated in various tumor cell lines in vitro. PMEG also represents an active component of some experimental prodrugs with enhanced selectivity and efficacy (such as GS-9219). PMEDAP seems to have weaker effect in vitro compared to PMEG, however it exhibited pronounced antitumor effect in SD-rats with spontaneous lymphoma. Therefore it was included in the present study as well. The aim of this study was to describe the interactions of PMEG and PMEDAP with p38 MAP kinase signaling and its relationship to the apoptosis. We investigated the influence of these compounds on the expression of four genes encoding p38 MAPK isoforms and whether this change is translated into the protein. It was found that PMEG up-regulates p38β and γ mRNA in CCRF-CEM cells and p38 β and δ in HL-60 cells. The effect of PMEDAP was less pronounced than that of PMEG. However, total p38 protein level remained unaffected by PMEG and PMEDAP. Activation of p38 MAPK cascade was also measured in the cells exposed to these agents using phospho-specific antibodies. We found that neither PMEG nor PMEDAP activated p38 kinase...

Page generated in 0.0514 seconds