• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 63
  • 54
  • 42
  • 13
  • 12
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 444
  • 361
  • 81
  • 63
  • 52
  • 48
  • 45
  • 41
  • 37
  • 33
  • 32
  • 28
  • 28
  • 26
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Functional Genetics of Suberin: The Role of CYP86A33 and StKCS6 in potato tuber periderm

Serra i Figueras, Olga 12 December 2008 (has links)
La caracterització funcional de dos gens en la peridermis, la ω hidroxilasa d'àcids grassos CYP86A33 -candidata per la funcionalització del carboni ω-terminal dels monòmers alifàtics de la suberina- i la ketoacyl-CoA sintasa StKCS6 -candidata per elongar àcids grassos o derivats llargs de suberina i ceres- es realitza per silenciament per RNA d'interferència en patata. La deficiència de CYP86A33 comporta una gran reducció dels monòmers principals de la suberina, l'àcid gras ω-hidroxilat i l'α,ω-diàcid C18:1, juntament amb una reducció total de la quantitat de suberina del 60%. Aquesta deficiència altera l'estructura lamel·lar típica de la suberina, així com també la funció barrera de la peridermis. La deficiència en StKCS6 comporta que els monòmers de la suberina de 28 carbonis o més llargs es redueixin i que els de 26 carbonis o més curts s'incrementin. Aquesta deficiència suggereix que la llargada dels compostos alifàtics pot contribuir a les propietats impermeabilitzants de la peridermis. / The functional characterization of two genes in the periderm, the ω-hydroxylase CYP86A33 -candidate for the functionalization of the ω-terminal carbon of suberin aliphatic compounds- and the putative ketoacyl-CoA synthase StKCS6 -candidate for the elongation of VLCFA and derivatives of suberin and waxes of periderm- is performed by RNA interference-mediated silencing in potato The CYP86A33 deficiency leads to a great reduction of the main suberin monomers, the C18:1 ω-hydroxyacid and α,ω-diacid, together with an overall decrease of the suberin total amount by 60%. The deficiency in these ω-oxidized fatty acids alters the typical suberin lamellar structure as well as the periderm water barrier function.StKCS6 deficiency leads to a decrease of suberin and wax compounds with chain-length C28 and higher and an increase of those with chain-length C26 and lower. This deficiency suggests that the aliphatics chain-length can contribute to the sealing properties of periderm.
42

The genetics of resistance to lufenuron in Drosophila melanogaster

Bogwitz, Michael R Unknown Date (has links) (PDF)
The rise of large scale agriculture in the 20th century created the need for effective strategies to control insect pests. Treatment with chemical insecticides has been a weapon of choice, but the inevitable evolution of resistance has followed in many insect species. Resistance represents a major challenge, not only for agricultural production, but also for environmental preservation and human health. Two major options for resistance have been identified, and these are target-site based and metabolic-based resistance. Much insecticide resistance research focuses on identifying these mechanisms through genetic and molecular analysis. The insecticide lufenuron is the focus of this study. It belongs to a novel insecticidal group called the insect growth regulators, which were introduced in 1970s as highly selective insecticides with low vertebrate toxicity. Resistance to lufenuron in the non-pest species Drosophila melanogaster has been observed in field populations, despite the lack of field usage of lufenuron (Wilson & Cain, 1997; O’Keefe, 1997). This study has taken advantage of this phenomenon to investigate resistance mechanisms in natural populations. At least two detoxification mechanisms were identified. (For complete abstract open document)
43

A Comparison of the Effect of Omeprazole and Rabeprazole on Clozapine Serum Concentrations

Naghmeh, Jabarizadekivi January 2008 (has links)
Master of Philosophy / Clozapine is a drug of choice for treatment of refractory schizophrenia, which is primarily metabolized by Cytochrome P450 1A2 (CYP1A2). Norclozapine is its main metabolite. There are reports of wide ranging gastrointestinal side effects associated with clozapine therapy, that result in concomitant administration of proton pump inhibitors to treat acid-related disorders. Omeprazole is an established CYP1A2 inducer, while an in vitro study has shown that rabeprazole is much less potent in this regard. There is no available information about the impact of rabeprazole on CYP1A2 activity in patients. Firstly, this information is essential when prescriptions are changed from omeprazole to rabeprazole to reduce medication costs. Therefore, the aim of this study was to compare the effects of rabeprazole and omeprazole on CYP1A2-mediated clearance (CL/F) of clozapine. Secondly, the effective dosage of clozapine varies widely among patients, making it necessary to individualize drug therapy with clozapine. The reason for dosage variation could be due to the influence of patient-related variables on clozapine plasma concentrations. Therefore, another aim of this study was to investigate the relationship between patient variables, such as age, gender, cigarette smoke, weight and body mass index and clozapine clearance (CL/F). A cross-over study design was used for this study. Twenty patients from Macquarie hospital who were receiving clozapine and rabeprazole (with no other interacting medications) were recruited in this study. Blood samples were taken at 30 min, 1 hr, 2 hr and 12 hr after a dose of clozapine. Rabeprazole was then replaced with omeprazole. After at least 1 month blood samples were again collected at the above corresponding intervals after clozapine. The plasma concentrations of clozapine and norclozapine were determined by high performance liquid chromatography. Abbottbase Pharmacokinetic Systems Software, which utilizes Bayesian forecasting, was used to estimate pharmacokinetic parameters of clozapine. The ratio of plasma norclozapine/clozapine concentrations at trough level was used to reflect CYP1A2 activity. No difference was observed in clozapine clearance (CL/F) and CYP1A2 activity during concurrent therapy with either rabeprazole or omeprazole. According to some studies CYP1A2 induction by omeprazole is dose dependent. Furthermore, since rabeprazole is a weak CYP1A2 inducer in vitro, we conclude that omeprazole and rabeprazole may not induce CYP1A2 activity when used at conventional therapeutic dosage (<40 mg/day). Hence, replacement of omeprazole with rabeprazole at conventional therapeutic dosages (20 or 40 mg daily) offers no advantages in the management of patients with schizophrenia on clozapine and no dose adjustment is required. Consistent with previous studies, clozapine concentrations were found to be significantly lower in cigarette smokers due to CYP1A2 induction. No relationship was found between age, gender, or weight and clozapine clearance (CL/F). However, body mass index showed a significant negative correlation with clozapine clearance (CL/F). Since weight gain and lipid accumulation are common side effects of clozapine they may be associated with a reduction of CYP1A2 activity and clozapine clearance (CL/F). Moreover, high lipoprotein levels may decrease the unbound fraction of clozapine and decrease the availability of clozapine for oxidation by cytochrome P450 enzymes. Therefore, it is concluded that omeprazole and rabeprazole may not induce CYP1A2 activity when used at conventional therapeutic dosage (<40mg/day). Hence, replacement of omeprazole with rabeprazole does not require the dose of clozapine to be adjusted. Moreover, the negative correlation between clozapine clearance (CL/F) and BMI is informative. Further studies are now required to clarify the relationship between BMI, lipoprotein levels and clozapine clearance in patients with schizophrenia.
44

Cytochrome P450 isoform-specific <em>in vitro</em> methods to predict drug metabolism and interactions

Taavitsainen, P. (Päivi) 13 February 2001 (has links)
Abstract Cytochromes P450 (P450, CYP) are a superfamily of enzymes that participate especially in the oxidative metabolism of various xenobiotics and endogenous compounds. The major goal of this study was to characterise suitable methods for routine preclinical in vitro testing of new chemical entities (NCE) and to test the methods for the affinity screening of selected drugs. In vitro methods used involve the utilisation of human liver microsomes for studies with P450-selective reference inhibitors, inhibitory antibodies and cDNA-expressed enzymes in cytochrome P450-catalysed activities and for studying the reactions of selegiline and entacapone. In this project, the CYP-catalysed oxidative in vitro biotransformation of selegiline into its primary metabolites desmethylselegiline and l-methamphetamine and the transformation of entacapone into its in vitro metabolite N-desethylentacapone were studied. The affinities of selegiline, desmethylselegiline, l-methamphetamine, entacapone, candesartan, eprosartan, irbesartan, losartan and valsartan to P450 enzymes were also elucidated, and the selectivity of tranylcypromine as a CYP2A6-selective reference inhibitor was characterised. The most important findings were that the methodology developed during this work is suitable for preclinical in vitro testing of NCEs and that the results obtained for the studied compounds are in line with the available in vivo data. By the in vitro testing methodology, it is possible to target the in vivo interaction studies to the relevant groups of compounds. The in vitro methods presented in this thesis could also make the early phases of drug development more cost-effective. Further, the number of animals used for in vivo testing in preclinical metabolism and interaction studies can be markedly reduced by effectively using this methodology.
45

Investigating orphan cytochromes P450 from Mycobacterium tuberculosis : the search for potential drug targets

Driscoll, Max January 2011 (has links)
Tuberculosis (TB) is a disease that the World Health Organisation (WHO) regards as a global pandemic. There is a great need for new drugs to combat this threat. Drug resistant strains of the causative agent, Mycobacterium tuberculosis (Mtb), have increased the urgency of this quest for novel anti-mycobacterial medicines. Publication of the Mtb genome sequence revealed a large number of cytochrome P450 (CYP) enzymes [Cole, S. T. et al. 1998]. These mono-oxygenase enzymes have been studied for many years and are responsible for metabolic functions in every kingdom of life. Research on the Mtb P450s to date has highlighted several of them as having critcal roles within the organism. CYP121 and CYP128 have been implicated as essential through gene knockout studies. It has been demonstrated that CYP125 is not essential for viability. However, it is part of a gene cluster highly important for Mtb infectivity and virulence. Due to the prospective importance of P450s to Mtb, this group of enzymes is under investigation as a source of novel drug targets. CYP142 was discovered as a potential drug target after it was located to a gene cluster involved in cholesterol catabolism during Mtb dormancy. As part of this PhD project, it was demonstrated that CYP142 performs an almost identical role to that reported for CYP125. These enzymes both perform C27 hydroxylation and carboxylation of the cholesterol side chain. However, variations in the level of oxidation have been identified, dependent upon the redox system with which these P450s are associated. A crystal structure of CYP142 showing high similarity in active site architecture to CYP125 supports the physiological role of CYP142 in cholesterol catabolism. Combining this with in vitro data which demonstrates that CYP142 possesses high affinity for a range of azole anti-fungal agents [Ahmad, Z. et al. 2005, 2006] supports the suggestion that it is a candidate target for the next generation of anti-mycobacterial drugs. CYP144 was highlighted as being important during the latent phase of Mtb growth, a phase that is not targeted by any of the current antimycobacterials. Work performed as part of this PhD has shown that many characteristics of CYP144 are highly comparable to those reported for other MtbP450s. CYP144 shows high affinity and specificity towards many azole molecules. Econazole, clotrimazole and miconazole have repeatedly been shown to bind to MtbP450s, including CYP144 and CYP142, with high affinity and are excellent potential candidates as novel anti-mycobacterial agents. An N-terminally truncated form of CYP144, CYP144-T, has been investigated in the pursuit of a CYP144 crystal structure. It is hoped that this will enable the elucidation of a physiological role for CYP144. Both CYP142 and CYP144 have demonstrated biochemical and biophysical characteristics that contribute to our knowledge of P450 enzymes. This PhD has established that CYP142 exhibits an equilibrium between P450 and P420 species in its CO-bound, ferrous form. A conversion from P420, and stabilisation of P450, upon substrate binding was also demonstrated. CYP144 displays unusual azole coordination characteristics when examined by EPR and removal of the CYP144 gene from Mtb increased sensitivity of the strain to clotrimazole. Studies of these enzymes has advanced knowledge of P450 and Mtb redox chemistry, established roles for the MtbP450 cohort and identified the potential of anti-mycobacterial drugs and associated targets.
46

Characterisation of novel cytochrome P450 fusion systems

Robinson, Jacob January 2010 (has links)
The biophysical and spectroscopic characterisation of two novel P450 fusion enzymes is reported. The first of these is CYP102A3, which is a fusion of P450 haem and cytochrome P450 reductase (CPR)-like domains and functions as a catalytically self-sufficient fatty acid hydroxylase in its host organism Bacillus subtilis. The elucidation of structural aspects of the isolated haem domain of CYP102A3 (HDCYP102A3) is described. This reveals a strong homology between HDCYP102A3 and the haem domain of the related, well studied enzyme CYP102A1 (known as BM3). Examination of the substrate binding and redox properties of HDCYP102A3 reveals variations in substrate selectivity and the influence of substrate binding over the haem-iron redox potential compared to BM3. Of particular note is the apparent cooperative binding profile displayed for some branched chain fatty acid substrates with CYP102A3. The second system characterised is CYP116B1 from Cupriavidus metallidurans, a P450 fusion with a reductase domain that resembles phthalate dioxygenase reductase (PDOR). The purification of the intact CYP116B1 enzyme, and also of its isolated haem domain (expressed from the relevant gene section), is optimised and biophysical characterisations are reported. The haem iron redox potential is found to be unusually positive (-85 mV) and the influence of thiocarbamate herbicide substrate binding upon this potential is found to be minimal, unlike the case in CYP102A£ with its fatty acid substrates and likely as a consequence of the relatively small degree of shift in haem-iron spin-state towards the high-spin form. From a panel of eight potential substrates for CYP116B1, six were found to stimulate NADPH oxidation, but only two of these were themselves oxidised by the enzyme, with hydroxylated products observable. The genetically dissected reductase domain of CYP116B1 was also expressed and purified, and kinetic studies of the reductase domain revealed a preference for NADPH over NADH coenzyme, and enables comparisons with kinetic features and coenzyme selectivity in other members of the ferredoxin reductase family of enzymes. Collectively, these studies advance our knowledge of the properties of two distinct types of P450-redox partner fusion enzymes, a growing class of enzymes with potential for biotechnological applications.
47

Characterisation of the unique Campylobacter jejuni cytochrome P450, CYP172A1

Elliott, Peter January 2013 (has links)
Campylobacter jejuni is a leading cause of food poisoning and according to the World Health Organisation accounts for majority of the 4.5 billion cases of global food poisoning each year. Genome sequencing by Parkhill et al. (2000) identified a gene, cj1411c, which is thought to encode a lone cytochrome P450, CYP172A1. In this thesis the role of CYP172A1 was studied using in vivo and in vitro techniques. The genomic location of cj1411c is adjacent to the capsular biosynthetic genes. The capsular and P450 genes are conserved in some species of Campylobacter and Helicobacter, as well as in Comamonas testosteroni. Importantly, this work has demonstrated that the P450 gene is expressed in two well characterised laboratory C. jejuni strains, 11168H and 81-176. Protein production was disrupted using insertional knockout mutagenesis, which allowed for investigations into the role of the enzyme in the host. Alterations to the observed autoagglutination rate and growth characteristics indicated that CYP172A1 has a role in modifying the bacterial surface. The insertional knockout mutant also resulted in cells which were more susceptible to detergent-like compounds (e.g. polymyxin B and sodium deoxycholate). In a previous report, it was suggested that the loss of the P450 function resulted in bacteria which were “shorter and fatter”, compared to wild type cells, but this thesis could find no evidence of such a phenomenon. CYP172A1 was successfully purified using recombinant expression in E. coli to enable biochemical and biophysical characterisation in vitro. CYP172A1 contains a typical P450 cysteine thiolate coordination to the heme iron, and exists in a low spin ferric heme state under neutral buffer conditions. The P450 was found to self aggregate, and despite rigorous investigations the cause of this aggregation was not fully established. Despite this issue, CYP172A1 was shown to bind to a wide range of P450 inhibitor-type compounds, with econazole displaying the tightest binding affinity (Kd = 100 nM). Identification of substrate-like compounds was achieved using high throughput compound screening, and a number of organic compounds were identified and shown to bind CYP172A1, inducing heme iron absorbance changes typical of either P450 inhibitors or substrates. Optical titrations for these molecules indicated that their CYP172A1 Kd values were in the low micromolar range. The catalytic capability of CYP172A1 was successfully demonstrated by providing the P450 with non native redox partners to oxidise one of such substrate-like compound (213071), resulting in the sulfoxidation of this compound.
48

Examining Hepatic Steroid Inactivation and Luteal Function throughout Bovine Pregnancy

Hart, Caitlin G 13 December 2014 (has links)
The objective of this study was to examine hepatic steroid inactivation and luteal function throughout bovine gestation. In pregnant beef cows, cytochrome P450 3A activity decreased from mid- to late-gestation, while progesterone concentrations tended to increase from mid- to late-gestation. Uridine diphosphate-glucuronosyltransferase activity per kg of body weight was increased in pregnant vs non-pregnant dairy cows. Total corpus luteum (CL) blood perfusion tended to be increased in pregnant vs non-pregnant dairy cows. Hepatic portal blood flow per kg of body weight was increased in pregnant vs non-pregnant dairy cows. Hepatic steroid inactivating enzyme activity, CL blood perfusion, and portal blood flow did not differ between pregnant and non-pregnant beef cows. There was no difference in progesterone concentrations in pregnant vs non-pregnant dairy or beef cows. The current study highlights the relevance of further investigation into steroid secretion and inactivation and their impact on the maintenance of pregnancy in cattle.
49

Probing cytochrome P450 (CYP) bioactivation with chloromethylindoline bioprecursors derived from the duocarmycin family of compounds

Ortuzar, N., Karu, K., Presa, Daniela, Morais, Goreti R., Sheldrake, Helen M., Shnyder, Steven D., Barnieh, Francis M., Loadman, Paul, Patterson, Laurence H., Pors, Klaus, Searcey, M. 05 October 2023 (has links)
Yes / The duocarmycins belong to a class of agent which has great potential for use in cancer therapy. Their exquisite potency means they are too toxic for systemic use, and targeted approaches are required to unlock their clinical potential. In this study, we have explored seco-OH-chloromethylindoline (CI) duocarmycin-based bioprecursors for their potential for cytochrome P450 (CYP)-mediated cancer cell kill. We report on synthetic and biological explorations of racemic seco-CI-MI, where MI is a 5-methoxy indole motif, and dehydroxylated analogues. We show up to a 10-fold bioactivation of de-OH CI-MI and a fluoro bioprecursor analogue in CYP1A1-transfected cells. Using CYP bactosomes, we also demonstrate that CYP1A2 but not CYP1B1 or CYP3A4 has propensity for potentiating these compounds, indicating preference for CYP1A bioactivation. / The authors would like to thank Yorkshire Cancer Research (Program grant B381PA) for supporting our work focused on exploring CYPs as targets for prodrug development. The human recombinant CYP1A1 was a gift from Prof Emily E. Scott, University of Michigan; the enzyme was produced via NIH funded grant (R37 GM076343).
50

Investigation of Catalysis of Nitration by Cytochrome P450s

Johnson, Lannika 01 January 2022 (has links)
TxtE is a protein related to cytochrome P450 enzymes, which catalyze a number of reactions that typically involve oxygen and not nitrogen. It has been discovered that TxtE can nitrate tryptophan through an unusual reaction in which it uses nitric oxide (NO) as a nitrogen donor to install the nitro group despite NO typically being considered toxic to bacteria. This project will determine if all cytochromes P450 can catalyze nitration as long as they are given NO. This will have an impact on understanding drug delivery and metabolism for which nitration is important.

Page generated in 0.0456 seconds