• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 63
  • 54
  • 42
  • 13
  • 12
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 444
  • 361
  • 81
  • 63
  • 52
  • 48
  • 45
  • 41
  • 37
  • 33
  • 32
  • 28
  • 28
  • 26
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Etude et applications de nouveaux modèles géométriques des canaux d'accès au site actif de certains cytochromes P450 humains par des ligands volumineux / Analysis and applications of new geometrical models of active site access channels of some human cytochromes P450 for large ligands

Benkaidali, Lydia 15 September 2016 (has links)
Les cytochromes P450s (CYPs) sont des hémoprotéines intervenant dans la fonction de détoxication cellulaire. Le site actif des CYPs est enfoui dans la protéine, mais accessible aux ligands par des canaux. A l'aide d'une méthode récente basée sur la triangulation de Delaunay de la protéine, et implémentée dans le logiciel CCCPP, nous avons modélisé géométriquement ces canaux pour plusieurs isoformes humaines, dont le 3A4, présent au niveau du foie humain et responsable de la métabolisation d'un nombre important de médicaments, afin de constituer un filtre stérique destiné au criblage virtuel rapide de chimiothèques. Cette approche nous a permis d'obtenir des informations sur les mécanismes d'ouverture et de fermeture des canaux, permettant d'expliquer comment des ligands volumineux peuvent accéder au site actif. Ces résultats confirment et étendent ceux de la littérature, et peuvent contribuer à l'élaboration de médicaments nouveaux ou ayant moins d'effets secondaires. / The cytochromes P450s (CYPs) are hemoproteins involved in the cellular detoxification function. The CYPs active site is buried inside the protein, but it can be accessed by the ligands through channels. With a recent method based upon the Delaunay triangulation of the protein, and implemented in the CCCPP software, we modelized geometrically these channels for several human isoforms, including the 3A4, located in the human liver and responsible of the metabolization of an important number of drugs, in order to build a sterical filter devoted to high throughput virtual screening of chemical libraries. This approach let us to get information on mechanisms of opening and closing of the channels, allowing to explain how large ligands can access to the active site. These results are in agreement and extend those found in the literature, and can contribute to the design of new drugs or of drugs having less side effects.
82

Engineering cytochrome P450-reductase fusion enzymes for biocatalysis

Kelly, Paul January 2014 (has links)
Cytochromes P450 (P450s) are a superfamily of heme-thiolate monooxygenases. They catalyse a wide variety of reactions on a vast number of substrates and are of particular interest for biocatalyst development due to their ability to oxidise non-activated C-H bonds. Fusion of a P450 to a suitable redox partner protein produces a catalytically self-sufficient enzyme and removes the need to produce electron transfer proteins separately. The well-studied bacterial protein P450cam (Pseudomonas putida) has been fused to the reductase (RhFRed) from the natural fusion protein P450-RhF (Rhodococcus sp.). The P450cam-RhFRed system catalyses the oxidation of camphor and several non-natural substrates and served as the basis for P450cam re-engineering in this current project, with the aim of expanding the substrate scope towards a more mammalian-like activity. The P450cam active site was partitioned into seven paired amino acids and each pair randomised in turn to generate seven sub-libraries of P450cam variants. These were screened for activity using a specially developed colony screen for detection of the blue pigment indigo. In total 94 new variants were identified and then pooled for secondary screening on a number of new substrates, identifying potentially novel activities within the ‘indigo positive’ population. In a separate ‘chimeragenesis’ approach substrate recognition sites (SRSs) within P450cam were targeted for exchange with equivalent portions from a number of human P450s. The B’ helix and F-G loop regions from CYPs 1A2, 2C8, 2D6 and 3A4 were grafted onto the P450cam structure and several of the B’ helix swaps were produced as soluble proteins. The P450cam-2C8-B’-RhFRed chimera gave a Soret peak at 420 nm in the Fe(II)-CO state although an additional substitution next to the proximal cysteine appeared to restore a P450-like state. SRS-exchange therefore offered some insight into structural modularity in P450s, providing a basis for further biocatalyst development.
83

Heterologní exprese NADPH:cytochrom P450 reduktasy / Heterologous expression of NADPH:cytochrome P450 reductase

Stráňava, Martin January 2012 (has links)
NADPH:cytochrome P450 reductase (CPR) is a 78 kDa flavoprotein, which is together with cytochrome P450 component of monooxygenase system bound in the membrane of the endoplasmic reticulum. Monooxygenase system is involved in the metabolism of a wide range of organic substances, including drugs or various pollutants present in the environment (polycyclic aromatic hydrocarbons, aromatic amines, etc.). CPR works as a transporter of reducing equivalents from NADPH to the cytochromes P450. For proper interaction with cytochromes P450, intact N-terminal hydrophobic domain anchoring protein in the membrane is needed. Removing this domain, e.g. during trypsin proteolysis, gives rise a soluble CPR (72 kDa) and cause loss of catalytic activity towards cytochrome P450. During heterologous expression in E. coli proteolytically sensitive site of CPR (Lys56 - Ile57) is cleaved by intracellular trypsin-like proteases, that may negatively affect the yields of native 78 kDa protein. This thesis describes the heterologous expression, purification and characterization of two forms of rat CPR. WtCPR is a protein naturally occurring in rats (Wistar strain), while mCPR contains one amino acid substitution (K56Q) in the site of proteolytic degradation. The result of that substitution is proteolytically stable CPR,...
84

Studium vzájemného působení inhibitoru tyrosinkinas cabozantinibu a cytotoxického alkaloidu ellipticinu na expresi a aktivitu cytochromů P450 1A1, 1A2 a 1B1 / Effect of tyrosine kinase inhibitor cabozantinib and cytotoxic alkaloid ellipticine on expression and activity of cytochromes P450 1A1, 1A2 and 1B1

Měkotová, Barbora January 2020 (has links)
In recent years, tyrosine kinase inhibitors have been more and more used for the targeted cancer therapy, due to their ability to disrupt intracellular signalling pathways associated with the development of tumours. Cabozantinib is the tyrosine kinase inhibitor which has been approved for the treatment of thyroid cancer and it is also effective against several other types of cancer. However, multiple drugs combination is often used in anticancer therapy, which may result in their cytochrome P450-mediated interactions. Although this may affect the therapeutic effect of the drugs and cause adverse effects on the organism, very little is known about the effect of cabozantinib on biotransformation enzymes. Therefore, the effect of cabozantinib not only alone but also in combination with the known cytostatic ellipticine on the expression and the activity of cytochromes P450 1A1, 1A2 and 1B1 in rat liver and kidney in vivo was studied in this work. The gene expression was determined by quantitative PCR, the amount of protein was studied by Western blotting and consecutive immunodetection. The enzyme activity was studied using specific marker reactions, 7-ethoxyresorufin O-deethylation for CYP1A1, 7-methoxyresorufin O-demethylation for CYP1A2 and 17β-estradiol 4-hydroxylation for CYP1B1. Our results...
85

Inhibice enzymové aktivity cytochromů P450 endokrinním disruptorem 17α-ethinylestradiolem / Inhibition of enzyme activity of cytochromes P450 by endocrine disruptor 17α-ethinylestradiol

Otáhalová, Barbora January 2020 (has links)
17α-ethinylestradiol (EE2) is a synthetic hormone, derivative of the natural hormone estradiol. EE2 is one of the the most prescribed drugs in the world. It belongs to the estrogenic endocrine disrupter chemicals. These compounds are able to alter functions of the endocrine system and cause adverse effects in the organism, offspring and (sub)population. In this thesis, there are observed effects of 17α-ethinylestradiol on enzyme activities of main enzymes involved in phase I of xenobiotic biotransformation, i.e. cytochromes P450 (CYP), in vitro. Isoforms of CYP subfamilies 1A, 2B, 2C, 2E and 3A were studied in rats and humans. Each CYP isoform was incubated with EE2 at two concentrations, 10μM EE2 and the concentration corresponding to the substrate concentration in the specific marker reactions of individual CYP isoforms. The results indicate, that in rat liver microsomes the activity of all studied isoforms except CYP1A2 was decreased in the presence of EE2. When EE2 was added to the incubation mixture at the concentration of the reaction substrate, the greatest decrease in enzyme activity was observed for CYP2C6, with the remaining activity only 36%. In human liver microsomes, the activity of CYP2B6, CYP2C9, CYP2E1 and CYP3A4 was also effected by EE2. As in the case of rat model, CYP2C subfamily...
86

Přeměna cabozantinibu enzymy první fáze biotransformace / Metabolism of cabozantinib by enzymes of first phase of biotransformation

Jurečka, Tomáš January 2021 (has links)
Cabozantinib is an anticancer drug that inhibit tyrosine kinases which allow signal pathways important for growth and development of tumors. It is used for treatment of medullary thyroid cancer, hepatocellular carcinoma and kidney cancer. The major enzymes of the first phase of biotransformation that metabolize cabozantinib are cytochromes P450. In this thesis it was studied metabolism of cabozantinib and cytochromes P450 that participated on this metabolism. Hepatic microsomes of rat, mouse and rabbit were used for studying metabolism of cabozantinib in this thesis. It was also focused on the impact of particular isoforms of cytochromes P450 on metabolism of cabozantinib in rat microsomes. Time dependence of cabozantinib conversion in hepatic rat microsomes was also studied. Enzyme kinetics of metabolism of cabozantinib in hepatic rat microsomes, as well as impact of cytochromes P450 inhibitors on the metabolism were included. Metabolites were analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. Formation of metabolites of cabozantinib increased over time to 30 minutes of incubation and with some others to 40 minutes of incubation. Up to five different metabolites were detected in experiments (M1, desmethyl cabozantinib, M3, monohydroxy cabozantinib and cabozantinib...
87

Influence of lipid membrane environment on the kinetics of the cytochrome P450 reductase- cytochrome P450 3A4 enzyme system in nanodiscs

Liu, Kang-Cheng January 2017 (has links)
The cytochrome P450 enzyme system is a multicomponent electron-transfer chain composed of a haem-containing monooxygenase cytochrome P450 (CYP) and one or more redox partners. Eukaryotic CYPs and their redox partner NADPH-dependent cytochrome P450 oxidoreductase (CPR) are involved in many biological processes. Each protein has one N- terminal membrane anchor domain for location within the endoplasmic reticulum (ER). In mammals, CYPs and CPR are especially abundant in liver cells, where they play important roles in the metabolism of steroids, fatty acids, and xenobiotic compounds including numerous drugs of pharmaceutical importance. Incorporation into lipid membranes is an important aspect of CYP and CPR function, influencing their kinetic properties and interactions. In this thesis, soluble nanometer-scale phospholipid bilayer membrane discs, "nanodiscs", were used as a reconstitution system to study the influence of lipid membrane composition on the activities of the abundant human CYP3A4 and human CPR. Both enzymes were expressed and purified from bacteria, and assembled into functionally active membrane-bound complexes in nanodiscs. Nanodisc assembly was assessed by a combination of native and denaturing gel electrophoresis, and a fluorimetric assay was developed to study CYP3A4 reaction kinetics using 7-benzyloxyquinoline as substrate. Kinetic properties were investigated with respect to different lipid membrane compositions: phosphatidyl choline; a synthetic lipid mixture resembling the ER; and natural lipids extracted from liver microsomes. Full activity of the CYP3A4 system, with electron transfer from NADPH via CPR, could only be reconstituted when both CYP3A4 and CPR were membrane-bound within the same nanodiscs. No activity was observed when CPR and CYP3A4 were each incorporated seperately into naodiscs then mixed together, or when soluble forms of CPR were mixed with pre-assembled CYP3A4-nanodiscs. Thus, assembly of the two proteins within the same membrane was shown to be essential for the function of the CPR-CYP3A4 electron transfer system. Comparison of the reaction kinetics in different membrane compositions revealed liver microsomal lipid to have an enhancing effect both on the activity of the assembled CPR-CYP3A4 nanodisc complex, and on the activity of CPR alone incorporated in nanodiscs, when compared either to the synthetic lipid mixture or to phosphatidyl choline alone. Thus, natural lipids appear to possess properties or include components important for the catalytic function of the CYP system, which are absent from synthetic lipid. Input of electrons, measured by NADPH consumption, exceeded product formation rate by the CPR-CYP3A4 complex in nanodiscs, indicating "leakage" in the electron flow, possibly due to uncoupling of the two enzymes. Uncoupling was shown to occur by developing a novel fluorimetric method using the dye MitSOX to detect superoxide production. The significance of this, and to what extent control of coupling could be a natural means of regulation of the CPR-CYP system, remains to be determined. Thus, phospholipid bilayer nanodiscs prove a powerful tool to enable detailed analysis of the reaction kinetics of membrane-reconstituted CPR-CYP systems, and to allow pertinent questions to be addressed concerning the integral significance of the membrane environment.
88

Modulation de l'expression et de l'activité de la NADPH P450 réductase chez le lapin.

Dumais, Guillaume 08 1900 (has links)
L’activité catalytique du cytochrome P450 dépend de la disponibilité d’électrons produits par la NADPH P450 réductase (NPR). Notre étude a pour but de déterminer comment l’expression de la NPR est modulée chez le lapin. Afin de comprendre comment l’expression de la NPR est modulée, des hépatocytes de lapins témoins ont été incubés pendant 2, 4, 24 et 48 heures en présence de plusieurs activateurs de facteurs de transcription connus du cytochrome P450. De plus, des lapins ayant reçu une injection sous-cutanée de térébenthine afin de produire une réaction inflammatoire aseptique sont sacrifiés 48 heures plus tard dans le but d’étudier les effets de l’inflammation sur l’expression de la NPR. La rosiglitazone, le fénofibrate, l’acétate de plomb et le chlorure de cobalt (des inducteurs des PPAR, PPAR, AP-1 et HIF-1), après 48 heures d’incubation, n’ont provoqué aucun changement d’expression ou d’activité de la NPR. Après 48 heures d’incubation, la dexaméthasone (Dexa) a augmenté la quantité d’ARNm (QT-PCR), l’expression et l’activité de la NPR (p<0,05), en plus d’augmenter l’ARNm des récepteurs nucléaires CAR (récepteur constitutif à l’androstane) et PXR (récepteur X prégnane) (p<0.05). Le phénobarbital (PB) a augmenté seulement l’activité de la NPR (p<0.05). Par contre, après 48 heures d’incubation, la combinaison PB et Dexa a augmenté la quantité d’ARNm, ainsi que l’expression et l’activité de la NPR (p<0.05). La combinaison de PB et Dexa a induit une augmentation d’ARNm des récepteurs nucléaires CAR, PXR et RXR (récepteur X du rétinoïde) plus précocement, soit après 2 heures d’incubation (p<0.05). Le PD098059 (PD), un bloqueur de l’activation de MAPK1 (mitogen-activated protein kinase), et l’acide okadaïque (OA), un inhibiteur de la protéine phosphatase 2A (PP2A), ont bloqué l'augmentation d'expression et d'activité de la NPR induite par le PB après 48 heures d’incubation. La réaction inflammatoire aseptique a diminué l’expression et l’activité de la NPR après 48 heures d’incubation (p<0.05). On conclue que la dexaméthasone et le phénobarbital sont des inducteurs potentiels de la NPR et que les voies de signalisation de CAR, PXR et RXR semblent être impliquées dans le contrôle de cette induction. Des études supplémentaires devront être complétées afin de confirmer ces résultats préliminaires. / The catalytic activity of the cytochrome P450 depends on the availability of electrons produced by the NADPH P450 reductase (NPR). Our study aims to determine how the expression of the NPR is modulated in rabbits. In order to understand how the expression of the NPR is modulated, hepatocytes from rabbits in the control group were incubated for 2, 4, 24 and 48 hours in the presence of several cytochrome P450 transcription factor activators. Furthermore, a group of rabbits received a sub-cutaneous injection of turpentine in order to create an aseptic inflammatory response with the aim to assess the effects of inflammation on the expression of the NPR. Rosiglitazone, fenofibrate, lead acetate and cobalt chloride (inducers of PPAR, PPAR, AP-1 and HIF-1) did not produce any change in the expression or the activity of the NPR after a 48 hour incubation period. Dexamethasone (Dexa) increased the amount of mRNA (QT-PCR), and NPR's expression and activity as well as CAR (constitutive androstane receptor) and PXR (pregnane X receptor) nuclear receptors' mRNA after a 48 hour incubation period (p<0.05). Phenobarbital (PB) increased NPR's activity (p<0.05). However, the combination of PB and Dexa increased the amount of mRNA, as well as NPR's expression and activity after a 48 hour incubation period (p<0.05). The combination of PB and Dexa increased CAR, PXR and RXR (retinoid X receptor) nuclear receptors' mRNA after a 2 hour incubation period. PD098059 (PD), a inhibitor of MAPK1 (mitogen-activated protein kinase) activation, and okadaic acid (OA), an inhibitor of the phosphatase 2A protein (PP2A), prevented the increase of NPR expression and activity induced by PB after a 48 hour incubation period. The aseptic inflammatory reaction decreased NPR's expression and activity after a 48 hour incubation period (p<0.05). We conclude that dexamethasone and phenobarbital are potential NPR inductors and that CAR, PXR and RXR signaling pathways appear to be involved in controlling this induction. However, further studies will be needed to confirm these preliminary results.
89

Modulation de l'expression et de l'activité de la NADPH P450 réductase chez le lapin

Dumais, Guillaume 08 1900 (has links)
No description available.
90

Activation des canaux potassium(+) dépendants du calcium(2+) par l'acide époxyéicosatriénoïque et son rôle en physiologie des muscles lisses des voies respiratoires

Dumoulin, Marc January 1998 (has links)
Ce travail présente l'étude de la modulation des canaux K[indice inférieur Ca] des muscles lisses des voies respiratoires par les EETs. Nous avons démontré que l'isomère 11,12-EET active directement les canaux K[indice inférieur Ca], sans l'implication d'une protéine G. Des concentrations de 0.9-3.0 [mu]M multiplient par 1.2-4 la probabilité d'ouverture des canaux K[indice inférieur Ca] sans affecter leur conductance. De plus, les effets du 11,12-EET sont présents lorsque la molécule exogène est ajoutée du côté extracellulaire (cis), et non du côté cytoplasmique (trans) du canal. Le précurseur du 11,12-EET, l'acide arachidonique, induit aussi une activation des canaux K[indice inférieur Ca], mais à des concentrations beaucoup plus élevées. Par contre, les platelet-activating factors (PAF) n'ont aucun effet direct sur le canal, même à des concentrations de 10 [mu]M. Le 11,12-EET n'induit pas une plus grande activation des canaux K[indice inférieur Ca] avec la présence de GTP du côté cytoplasmique, et donc l'hypothèse de la double activation de ces canaux par le 11,12-EET n'a pas été retenue. Finalement, le 11,12-EET induit une relaxation des muscles lisses des bronches de cobayes contractés avec le carbamylcholine, un agoniste muscarinique".--Résumé abrégé par UMI.

Page generated in 0.0257 seconds