• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 63
  • 54
  • 42
  • 13
  • 12
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 444
  • 361
  • 81
  • 63
  • 52
  • 48
  • 45
  • 41
  • 37
  • 33
  • 32
  • 28
  • 28
  • 26
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Les facteurs de risque de la non-réponse à l'Acide Valproïque chez les enfants atteints d'épilepsie généralisée avec absences

Ollivier, May Lissa January 2009 (has links)
L'épilepsie idiopathique généralisée avec absences (EIGA) est une des formes les plus fréquentes d'épilepsie chez l'enfant. Elle survient chez les enfants exempts de maladie avec un pic d'incidence autour de 5 ans. Des statistiques mondiales indiquent que les crises d'absences sont contrôlées par l'Acide Valproïque (AV) chez 75 % des enfants. Pour les autres, la médication est inefficace ou elle entraîne des effets secondaires qui limitent son utilisation. Certaines études ont identifié des facteurs cliniques associés à l'épilepsie réfractaire mais elles incluent tous les types d'épilepsie et tous les traitements. De plus, un nombre croissant de recherches démontrent que la réponse aux médicaments pourrait être grandement influencée par des facteurs génétiques, plus particulièrement par les polymorphismes du cytochrome P450 (CYP). Il faudrait donc ajuster le traitement en fonction du profil génétique de chaque patient. Dans cette étude, nous avons voulu identifier des facteurs cliniques, sociodémographiques et génétiques qui pourraient influencer la réponse à l'AV chez des enfants diagnostiqués d'EIGA. Méthodes : Nous avons tout d'abord identifié des patients diagnostiqués d'EIGA qui étaient suivis au CHU Sainte-Justine de Montréal et traités à l'AV pendant au moins deux mois. Par la suite, une même personne (MLO) a réalisé la revue de tous les dossiers médicaux afm [i.e. afin] d'extraire l'information concernant la réponse à l'AV et les données cliniques et sociodémographiques qui pourraient influencer celle-ci. Une collecte d'échantillons d'ADN des patients toujours suivi à la clinique a ensuite été effectuée afm d'évaluer l'impact de polymorphismes dans deux enzymes du CYP (CYP2C9 et CYP2C19) sur la réponse à l'AV chez ces patients. L'évaluation des polymorphismes s'est faite par hybridation avec oligonucléotides spécifiques pour des allèles (ASO). Des analyses bivariées ont été effectuées afin d'identifier toutes les variables qui différaient entre les répondants (R) et les non-répondants (NR) à l'AV. Par la suite, nous avons effectué une analyse de régression logistique afm d'éliminer les variables qui cessaient d'être significatives en présence des autres. Résultats : Nous avons révisé 190 dossiers (112 R et 68 NR) pour l'analyse des facteurs cliniques et sociodémographiques. Trois variables étaient significativement différentes entre les deux groupes soit l'âge au diagnostic (R=7,55 ans vs NR=6,11 ans, p,001), la présence de crises généralisées tonico-cloniques (R=13,4 % vs NR=33,8 %, p=0,001) et fmalement [i.e. finalement] une fréquence élevée de crises avant le début du traitement (R=27,0 % vs NR=52,9 %, p<0,001). Ces trois variables continuaient d'être significatives dans le modèle de régression logistique. Pour la partie génétique du projet, un échantillon d'ADN a été prélevé sur 83 patients (46 R et 37 NR). Les NR présentaient significativement plus de polymorphismes du CYP2C19 (43,2 % vs 17,4 %, p=0,010) avec un rapport de cotes de 3,62. Lorsqu'on incluait ce polymorphisme dans le modèle de régression logistique, seuls l'âge au diagnostic et le polymorphisme du CYP2C19 demeuraient significatifs. Conclusions : Dans cette étude, nous avons pu identifier certains facteurs cliniques et génétiques qui influencent la réponse à l'AV chez les enfants diagnostiqués d'EIGA. Les résultats montrent qu'il y a un certain profil de patient plus à risque de ne pas répondre au traitement. Donc, si un patient ne semble pas répondre à l'AV et qu'il présente ces facteurs, le neurologue devrait considérer un traitement alternatif plutôt que d'augmenter la dose d'AV et ainsi risquer l'augmentation des effets secondaires dus au traitement.
92

An investigation into the biological activity of rooibos (Aspalathus linearis) extracts

Richfield, David 03 1900 (has links)
Thesis (MSc (Biochemistry))--Stellenbosch University, 2008. / This study describes: 1. The preparation of chloroform, methanol and aqueous extracts of unfermented and fermented rooibos (Aspalathus linearis). 2. The chromatographic fractionation of aqueous rooibos extracts and an investigation into the polyphenol content and antioxidant activity of the fractions. 3. The preparation of ovine adrenal microsomes containing active steroidogenic P450 enzymes, including cytochrome P450 17a-hydroxylase, CYP17, and cytochrome P450 steroid 21-hydroxylase, CYP21. 4. An investigation into the influence of chloroform and methanol extracts of rooibos on the binding of steroid substrates, progesterone and 17-hydroxyprogesterone, to CYP17 and CYP21.
93

Synthesis, Kinetic and Catalytic Studies of Manganese Complexes with Corrole and Porphyrin Ligands

Jeddi, Haleh 01 April 2017 (has links)
High-valent transition metal-oxo intermediates play a significant role in the catalytic cycle of the ubiquitous cytochrome P450 enzymes and in biomimetic catalytic systems. In this work, manganese(III) porphyrin and corrole systems (2) were synthesized and characterized by UV-vis absorbance and 1H-NMR, matching literaturereported spectroscopic data. Manganese(V)-oxo corroles (3) and a manganese(IV)-oxo porphyrin (4) were successfully generated by chemical oxidation using mchloroperoxybenzoic acid (m-CPBA), and their oxidation reactions with organic reductants were comparatively investigated. Results from single-turnover kinetic studies indicate that in the tris(pentafluorophenyl)corrole system (3a), the active oxidizing intermediate differs in different solvents. The active oxidizing intermediate in acetonitrile is likely the manganese(V)-oxo species 3a. However, in dichloromethane, the active oxidant is suspected to be a putative manganese(VI)-oxo species generated by disproportionation of the manganese(V)-oxo species. Tris(pentafluorophenyl)corrolato manganese(III) (2a) was shown to selectively catalyze sulfoxidation and epoxidation with iodobenzene diacetate [PhI(OAc)2] as a mild oxygen source. 2a exhibited higher conversions than triphenylcorrolato manganese(III) (2b), most likely because of the higher stability of 2a compared to 2b. In contrast, tetramesitylporphyrinato manganese(III) (2c) was more efficient in catalytic oxidations than 2a, resulting in much higher conversions, but much less selectivity. Other reported metalloporphyrin and metallocorrole systems show an accelerating effect upon addition of small amounts of water; however, neither corrole systems exhibited a positive water effect. This is attributed to the strong coordination between the manganese center and water, preventing the oxygen source from coordination.
94

In vivo cytochrome P450 activity alterations in diabetic nonalcoholic steatohepatitis mice

Li, Hui, Clarke, John D., Dzierlenga, Anika L., Bear, John, Goedken, Michael J., Cherrington, Nathan J. 02 1900 (has links)
Nonalcoholic steatohepatitis (NASH) has been identified as a source of significant inter individual variation in drug metabolism. A previous ex vivo study demonstrated significant changes in hepatic Cytochrome P450 (CYP) activity in human NASH. This study evaluated the in vivo activities of multiple CYP isoforms simultaneously in prominent diabetic NASH mouse models. The pharmacokinetics of CYP selective substrates: caffeine, losartan, and omeprazole changed significantly in a diabetic NASH mouse model, indicating attenuation of the activity of Cyp1a2 and Cyp2c29, respectively. Decreased mRNA expression of Cyp1a2 and Cyp2c29, as well as an overall decrease in CYP protein expression, was found in the diabetic NASH mice. Overall, these data suggest that the diabetic NASH model only partially recapitulates the human ex vivo CYP alteration pattern. Therefore, in vivo determination of the effects of NASH on CYP activity should be conducted in human, and more appropriate models are required for future drug metabolism studies in NASH.
95

MUTAGENESIS AND SPECTROSCOPIC STUDIES OF MYCOBACTERIUM TUBERCULOSIS STEROL 14ALPHA DEMETHYLASE.

Modi, Anuja R. 03 August 2009 (has links)
P450s are heme containing enzymes which affect oxidation of substrates via catalytic intermediates having transient lifetimes. These oxidative catalytic intermediates are formed by a sequential interplay of electrons and protons at the active site of the enzyme bearing molecular dioxygen. The proton transfer to the active site from bulk solvent is coordinated by an “acid-alcohol” pair of active site residues which are conserved in all P450s. Sterol 14α-demethylases (CYP51) are P450 enzymes which catalyze oxidative deformylation of lanosterol in the cholesterol/ergosterol biosynthetic pathway. Both cholesterol and ergosterol are important regulators of membrane fluidity. CYP51 differs from other P450s in that the acid in the acid-alcohol pair in the active site is replaced by a His residue. This enzyme is present in tuberculosis (TB) causing pathogen Mycobacterium tuberculosis (Mtb). This finding was significant for primarily two reasons. The first one being the baffling presence of CYP51 in Mtb, as Mtb is not known to have any endogenous sterol biosynthetic pathways. The second being that CYP51 is a validated drug target in treating fungal infections. Thus given the global resurgence of multidrug resistant strains of Mtb and the deadly coexsistence of Mtb in immunocompromised HIV patients, CYP51 may be an ideal drug target for new generation of antimycobacterial drugs. The Mtb CYP51 enzyme was chosen to study the proton transfer pathways in the active site based on the outcome of explicit solvent molecular dynamics and hybrid quantum mechanics/molecular mechanics calculations performed in our laboratory. Based on these calculations of CYP51 catalysis, Glu173 was implicated to be the proton source. Proton transfer to the active site occurred by a coordinated shuttling via four water molecules, His259 and Thr260. To experimentally verify the roles of Glu173, His259 and Thr260 they were mutated to alanine and biophysically characterized. Ferredoxin, an accessory protein required to shuttle electrons from NADPH to the CYP51 active site for catalysis, was also cloned using ligation independent cloning. We were successfully able to reconstitute the electron transport chain for CYP51. The mutants were found to differentially bind type I and type II enzymes. Based on biophysical characterization, Thr260 can be implicated to have a role in modulating the spin state of the enzyme. The Mtb CYP51 enzyme was chosen to study the proton transfer pathways in the active site based on the outcome of explicit solvent molecular dynamics and hybrid quantum mechanics/molecular mechanics calculations performed in our laboratory. Based on these calculations of CYP51 catalysis, Glu173 was implicated to be the proton source. Proton transfer to the active site occurred by a coordinated shuttling via four water molecules, His259 and Thr260. To experimentally verify the roles of Glu173, His259 and Thr260 they were mutated to alanine and biophysically characterized. Ferredoxin, an accessory protein required to shuttle electrons from NADPH to the CYP51 active site for catalysis, was also cloned using ligation independent cloning. We were successfully able to reconstitute the electron transport chain for CYP51. The mutants were found to differentially bind type I and type II enzymes. Based on biophysical characterization, Thr260 can be implicated to have a role in modulating the spin state of the enzyme.
96

L'utilisation de la dompéridone comme substrat marqueur de l'activité in vitro des CYP3A4 et CYP3A5

Michaud, Véronique January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
97

Oxidace benzo(a)pyrenu cytochromem P450 1A1 exprimovaným v prokaryotickém a eukaryotickém systému / Oxidation of benzo(a)pyrene by cytochrome P450 1A1 expressed in prokaryotic and eukaryotic systems

Kroftová, Natálie January 2013 (has links)
Benzo[a]pyrene (BaP) is a human carcinogen, which is metabolized by a variety of enzyms such as cytochrome P450 (CYP) and epoxide hydrolase. The aim of this work was to study BaP metabolism in vitro by the hepatic microsomal system of rats treated with CYP inducers and by human cytochrome P450 1A1 (CYP1A1) expressed in eukaryotic and prokaryotic systems. An eukaryotic expression system consisted of microsomes isolated from insect cells, whereas a prokaryotic expression system was formed by the membrane fragments of E. coli. In the case of recombinant human CYP1A1, we investigated the influence of cytochrome b5, NADPH:cytochrome P450 reductase (CPR) and epoxide hydrolase in BaP oxidation. Isolation and purification of rabbit hepatic CPR was another aim of this work. BaP metabolites were separated by HPLC. The results found in this work demostrate the fact that hepatic microsomal systems of rats treated with an inducer of CYP1A (Sudan I), an inducer of CYP2B (phenobarbital) and an inducer of CYP3A (PCN) exhibit higher efficiency of BaP oxidation than microsomes of control rats. BaP is oxidized by human CYP1A1 expressed in the eukaryotic system to six metabolites (BaP-9,10-dihydrodiol, BaP metabolite with unknown structure, BaP-7,8-dihydrodiol, BaP-1,6-dion, BaP-3,6-dion, BaP-3-ol), whereas by human...
98

Role of cytochrome P450 in breast carcinogenesis

Singh, Subir January 2016 (has links)
Cytochrome P450 enzymes (CYP) are key oxidative enzymes that are crucial in several biological processes, such as metabolism of exogenous and endogenous substances, the biological transformation of drugs and xenobiotics and biosynthesis of steroids and fatty acid. Several CYP have been identified in extra hepatic tissues implying that these enzymes exert other biological functions, which might explain their association with a number of diseases including diabetes, obesity and cancer. Understanding of these functions may provide the platform for the development of new therapeutic approaches and this is the aim of this investigation, namely to delineate the role of CYP in breast carcinogenesis. Cancer cells exhibit high levels of glycolysis even in the presence of high oxygen concentration. Cancer cells have very high proliferating rates so they need more biosynthesis materials like nucleic acids, phospholipids, fatty acids and glycolysis is the main source of biosynthetic precursors. Energy metabolism has recently attracted the interest of several laboratories as targeting the pathways for energy production in cancer cells could be an efficient anticancer treatment. Previous studies have shown that reactive oxygen species (ROS) regulate the energy metabolism in cancer cells. CYP are one of the ROS source. Expression of CYP in extrahepatic implies that these enzymes exert other biological functions which have not yet been elucidated. These findings led us to hypothesise that cytochrome P450 enzymes might be involved in the determination of the pathway of cellular energy metabolism in breast cancer cells and in particular in directing tumour cells to produce energy through glycolysis rather than Oxidative phosphorylation (OXPHOS). To investigate the role of CYP in breast carcinogenesis, we followed the protein levels of CYP1B1, CYP1A1, CYP2E1, CYP2C8, CYP2C9 and CYP3A4 in MCF-7 (Michigan Cancer Foundation-7), T47-D, MDA-MB-231 (MD Anderson series 231 cell line) and MDA-MB-468 (MD Anderson series 468 cell line) breast cancer cells treated with glycolytic inhibitors 3-Bromopyruvate and 2-Deoxyglucose (3BP and 2DG). CYP were differentially expressed in breast cancer cells upon treatment with the glycolytic inhibitors (2DG and 3BP) in breast cancer cell lines bearing different genetic background and migratory capacity. The CYP mediated ROS generation was followed in breast cancer cells overexpressing CYP1B1, CYP2C8, CYP2C9 and CYP2E1 or treated with 3BP, 2DG and CYP1B1 specific inhibitor 2,3',4,5'-Tetramethoxystilbene (TMS) by H2DCFDA (2',7'-dichlorodihydrofluorescein diacetate) staining. The functional significance of the CYP1B1, CYP2C8, CYP2C9, CYP2E1 mediated modulation of the cellular redox state was investigated by recording changes of indicators of biological pathways known to be affected by the cellular redox state such as cell cycle, adenosine triphosphate (ATP) level, lactate level, mitochondrial potential, autophagy and endoplasmic reticulum (ER) stress. Furthermore, the effect of CYP1B1 and CYP2E1 induction by their inducers (Benzopyrene and Acetaminophen respectively) and inhibition by their specific inhibitors (TMS and chlormethiazole (CMZ) respectively) on cell survival was investigated. Migratory potential of breast cancer cells was investigated under the treatment of glycolytic inhibitors, CYP1B1 inducer and inhibitors. The results obtained provide evidence that CYP are potentially involved in the regulation of ROS, cell cycle, ATP level, lactate level, mitochondrial potential, autophagy, ER stress and migratory potential in a manner dependent on the genetic background of the cells and the stage of the breast cancer, supporting the notion that CYP are potential breast cancer biomarkers.
99

Characterisation of orphan cytochrome P450s from Mycobacterium tuberculosis H37Rv

Nisbar, Nur Dayana Binti January 2018 (has links)
Tuberculosis is a disease that kills more people every year than any other infectious disease and is caused by the human pathogen, Mycobacterium tuberculosis (Mtb). This disease can be treated by a standard six month course of four antimicrobial drugs that have been in use since the 1960s. However, the rise of multi-drug resistant and extensively drug-resistant strains of TB has complicated the efforts to eradicate the disease. Therefore, there is a critical need for the development of new anti-TB drugs with a novel mechanism of action that can speed up treatment duration and help avoid resistance. The discovery of twenty genes encoding cytochrome P450 enzymes in the Mtb H37Rv genome sequence has pointed to the significance of these enzymes in the physiology and pathogenicity of this bacterium. Consequently, the characterisation of these Mtb P450 enzymes may define their physiological roles of which can be a novel anti-tubercular drug target. To date, the characterisations of selected Mtb P450 enzymes have highlighted their diverse and unexpected roles in the metabolism of cholesterol and lipids and the production of secondary metabolites. Biochemical and biophysical studies of these enzymes provided knowledge of their active site properties that may be exploited for drug discovery. Therefore, with the prospect of defining novel functions and identifying novel drug targets, characterisations of the remaining orphan Mtb P450s is of interest. M. tuberculosis CYP141A1 and CYP143A1 are orphan enzymes with unknown physiological function in Mtb which is characterised in this study through use of various spectroscopic and biophysical techniques. Interestingly, CYP141A1 can be expressed in form of which 54 amino acids (Del54CYP141A1) are deleted from the N-terminus. Although Del54CYP141A1 still retain spectroscopic characteristics, this form of P450 cannot be crystallized. Optimisation of full-length CYP141A1 buffer composition resulted to the formation of reproducible crystals and determination of CYP141A1 structure. Spectroscopic and structural characterisations presented in this thesis revealed many characteristics of CYP141A1 and CYP143A1 are comparable to previous Mtb P450s reported to date. CYP141A1 and CYP143A1 active site consist of b-type heme iron ligated by cysteine residue and a water molecule at its proximal and distal face, respectively. Both enzymes bind tightly to azole antifungal drugs highlighting their potential as a drug target. In addition, fragment-based screening applied to CYP141A1 and CYP143A1 provided the starting point for the development of potent, isoform-specific inhibitors for both orphan Mtb P450 enzymes. The first crystal structure of CYP141A1 and identification of new fragment binders of CYP141A1 and CYP143A1 are presented in this thesis. Overall, this research remains significant in providing new knowledge on the spectroscopic and structural properties of the M. tuberculosis P450s CYP141A1 and CYP143A1.
100

Cytochrome P450-mediated drug metabolizing activity in the nasal mucosa

Dhamankar, Varsha Sudhir 01 December 2013 (has links)
Pre-systemic elimination by local enzymatic degradation can play a key role in limiting the bioavailability of intranasally administered drugs. Despite remarkable advancement in the characterization of the nasal biotransformative enzymes, knowledge of the role of the nasal mucosa in limiting bioavailability of therapeutic agents is still inadequate. The aim of this work was to evaluate the expression and substrate biotransformation activity of cytochrome P450 enzymes in the nasal mucosa using bovine olfactory and respiratory explants as in vitro models. Gene expression and localization of major CYP450 isoforms in the nasal mucosa were examined using RT-PCR and immunohistochemistry. The bovine nasal mucosa showed abundant expression of CYP2A6 and 3A4 genes whereas 1A1, 1A2, 2C9, and 2C19 isoforms were expressed at much lower levels. The CYP450 proteins were observed to be present in the epithelial layer and in submucosal glandular cells. The diffusion of melatonin, a CYP1A2 substrate, and the appearance of 6-hydroxymelatonin, its primary metabolite, across bovine olfactory and respiratory explants was measured, and nasal olfactory and respiratory microsomal preparations were used to quantify the kinetic parameters for melatonin 6-hydroxylation. Results indicated that bovine olfactory and respiratory CYP450 isoforms were metabolically active towards melatonin metabolism, and the respiratory mucosa demonstrated the greatest melatonin 6-hydroxylation activity. Numerical simulations were used to probe the effects of the relative magnitudes of the permeability coefficient and enzymatic parameters on net substrate mass transfer across nasal mucosal tissues. The simulations indicated that the concentration gradient of the drug coupled with its permeability coefficient were the most significant factors controlling the transport of drugs across the mucosal tissue. Enzymatic degradation decreased the flux of drugs across the mucosa and had the greatest impact on low permeability compounds. The results from these studies show that the bovine nasal mucosa possesses significant metabolic activity, and the flux of a metabolically labile substrate across the nasal mucosa can be significantly reduced by its enzymatic degradation within the tissue. Use of kinetic modeling to characterize of the extent of biotransformation in the nasal mucosa enables the identification of metabolism-limited bioavailability of intranasally administered drug compounds.

Page generated in 0.0506 seconds