• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 12
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Novel Function of DEAD Box p68 RNA Helicase In Tumor Cell Proliferation And Epithelial-Mesenchymal Transition

Yang, Liuqing 31 July 2006 (has links)
Activities of the DEAD box (Asp-Glu-Ala-Asp) family of proteins- including RNA-dependent ATPase and RNA helicase- function in all organisms to sculpt RNA-RNA duplex and RNA-protein complexes, ensuring that necessary rearrangements are rapidly and properly resolved during genetic information processing. Identified as a prototypic member of the DEAD box family and documented as an ATPase and RNA helicase, p68 plays essential and diverse functions in the control of gene expression ranging from pre-mRNA/rRNA processing and mRNA decay/stability to transcriptional activation and initiation. Despite the early implied roles in organ maturation and tumor progression, the functional contributions of p68 to growth/differentiation regulation and cancer development remain undefined. Here, we show c-Abl-dependent phosphorylation of p68 markedly associates with abnormal cell growth and cancer development. Importantly, we characterize an unanticipated signaling module through which p68 functionally contributes to Epithelial-Mesenchymal Transition (EMT) and cell proliferation. p68, which appears to be phosphorylated by c-Abl at tyrosine 593, consequently promotes an EMT through its ability to recruit â-catenin into cell nucleus via a canonic Wnt/â-catenin axis independent way; accordingly, phosphor-p68 (phosphorylated at tyrosine 593 residue) also stimulates tumor cell growth, which requires the ATPase activity of the protein. These findings define a potential mechanism whereby phosphor-p68 recruits â-catenin into cell nucleus in ATP hydrolysis driven fashion and cooperatively regulates transcriptional programs that control an EMT. The dissertation thus demonstrates a tight coordination between DEAD box RNA helicase and cancer development.
12

Functional Study of the Threonine Phosphorylation and the Transcriptional Coactivator Role of P68 RNA Helicase

Dey, Heena T 07 December 2012 (has links)
P68 RNA helicase is a RNA helicase and an ATPase belonging to the DEAD-box family. It is important for the growth of normal cells, and is implicated in diverse functions ranging from pre-mRNA splicing, transcriptional activation to cell proliferation, and early organ development. The protein is documented to be phosphorylated at several amino-acid residues. It was previously demonstrated in several cancer cell-lines that p68 gets phosphorylated at threonine residues during treatments with TNF-α and TRAIL. In this study, the role of threonine phosphorylation of p68 under the treatment of anti-cancer drug, oxaliplatin in the colon cancer cells is characterized. Oxaliplatin treatment activates p38 MAP-kinase, which subsequently phosphorylates p68 at T564 and/or T446. P68 phosphorylation, at least partially, influences the role of the drug on apoptosis induction. This study shows an important mechanism of action of the anti-cancer drug which could be used for improving cancer treatment. This study also shows that p68 is an important transcriptional regulator regulating transcription of the cytoskeletal gene TPPP/p25. Previous analyses revealed that p68 RNA helicase could regulate expression of genes responsible for controlling stability and dynamics of different cytoskeletons. P68 is found to regulate TPPP/p25 gene transcription by associating with the TPPP/p25 gene promoter. Expression of TPPP/p25 plays an important role in cellular differentiation while the involvement of p68 in the regulation of TPPP/p25 expression is an important event for neurite outgrowth. Loss of TPPP expression contributes to the development and progression of gliomas. Thus, our studies further enhance our understanding of the multiple cellular functions of p68 and its regulation of the cellular processes.

Page generated in 0.0482 seconds