• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Acid transport through gastric mucus : A study in vivo in rats and mice

Phillipson, Mia January 2003 (has links)
<p>The gastric mucosa is frequently exposed to endogenously secreted hydrochloric acid of high acidity. Gastric mucosal defense mechanisms are arranged at different levels of the gastric mucosa and must work in unison to maintain its integrity. </p><p>In this thesis, several mechanisms underlying gastric mucosal resistance to strong acid were investigated in anesthetized rats and mice. The main findings were as follows:</p><p>Only when acid secretion occurred did the pH gradient in the mucus gel withstand back-diffusion of luminal acid (100 mM or 155 mM HCl), and keep the juxtamucosal pH (pH<sub>jm</sub>) neutral. Thus, when no acid secretion occurred and the luminal pH was 0.8-1, the pH gradient was destroyed. </p><p>Bicarbonate ions, produced concomitant with hydrogen ions in the parietal cells during acid secretion and blood-borne to the surface epithelium, were carried transepithelially through a DIDS-sensitive transport. </p><p>Prostaglandin-dependent bicarbonate secretion seemed to be less important in maintaining a neutral pH<sub>jm</sub>. </p><p>Removal of the loosely adherent mucus layer did not influence the maintenance of the pH<sub>jm</sub>. Hence, only the firmly adherent mucus gel layer, approximately 80µm thick, seemed to be important for the pH<sub>jm</sub>. </p><p>Staining of the mucus gel with a pH-sensitive dye revealed that secreted acid penetrated the mucus gel from the crypt openings toward the gastric lumen only in restricted paths (channels). One crypt opening was attached to one channel, and the channel was irreversibly formed during acid secretion. </p><p>Gastric mucosal blood flow increased on application of strong luminal acid (155 mM HCl). This acid-induced hyperemia involved the inducible but not the neural isoform of nitric oxide synthase. These results suggest a novel role for iNOS in gastric mucosal protection and indicate that iNOS is constitutively expressed in the gastric mucosa. </p><p>It is concluded that a pH gradient in the gastric mucus gel can be maintained during ongoing acid secretion, since the acid penetrates the mucus only in restricted channels and bicarbonate is carried from the blood to the lumen via a DIDS-sensitive transporter.</p>
2

Acid transport through gastric mucus : A study in vivo in rats and mice

Phillipson, Mia January 2003 (has links)
The gastric mucosa is frequently exposed to endogenously secreted hydrochloric acid of high acidity. Gastric mucosal defense mechanisms are arranged at different levels of the gastric mucosa and must work in unison to maintain its integrity. In this thesis, several mechanisms underlying gastric mucosal resistance to strong acid were investigated in anesthetized rats and mice. The main findings were as follows: Only when acid secretion occurred did the pH gradient in the mucus gel withstand back-diffusion of luminal acid (100 mM or 155 mM HCl), and keep the juxtamucosal pH (pHjm) neutral. Thus, when no acid secretion occurred and the luminal pH was 0.8-1, the pH gradient was destroyed. Bicarbonate ions, produced concomitant with hydrogen ions in the parietal cells during acid secretion and blood-borne to the surface epithelium, were carried transepithelially through a DIDS-sensitive transport. Prostaglandin-dependent bicarbonate secretion seemed to be less important in maintaining a neutral pHjm. Removal of the loosely adherent mucus layer did not influence the maintenance of the pHjm. Hence, only the firmly adherent mucus gel layer, approximately 80µm thick, seemed to be important for the pHjm. Staining of the mucus gel with a pH-sensitive dye revealed that secreted acid penetrated the mucus gel from the crypt openings toward the gastric lumen only in restricted paths (channels). One crypt opening was attached to one channel, and the channel was irreversibly formed during acid secretion. Gastric mucosal blood flow increased on application of strong luminal acid (155 mM HCl). This acid-induced hyperemia involved the inducible but not the neural isoform of nitric oxide synthase. These results suggest a novel role for iNOS in gastric mucosal protection and indicate that iNOS is constitutively expressed in the gastric mucosa. It is concluded that a pH gradient in the gastric mucus gel can be maintained during ongoing acid secretion, since the acid penetrates the mucus only in restricted channels and bicarbonate is carried from the blood to the lumen via a DIDS-sensitive transporter.
3

<i>Helicobacter pylori</i> and Gastric Protection Mechanisms : An <i>in vivo</i> Study in Mice and Rats

Henriksnäs, Johanna January 2005 (has links)
<p>The stomach is frequently exposed to hazardous agents and to resist this harsh environment, several protective mechanisms exist. Of special interest is the gastric pathogen <i>Helicobacter pylori </i>which causes gastritis, ulcers and cancer but the mechanism leading to these diseases are still unclear. However it is very likely that <i>H. pylori </i>negatively influence the protection mechanisms that exist in the stomach. </p><p>The aims of the present investigation were first to develop an in vivo mouse model in which different protection mechanisms could be studied, and second to investigate the influence of <i>H. pylori</i> on these mechanisms. </p><p>An in vivo preparation of the gastric mucosa in mice was developed. This preparation allows studies of different gastric mucosal variables and can also be applied for studies in other gastro-intestinal organs. </p><p>Mice chronically infected with <i>H. pylori</i>, were shown to have a reduced ability of the mucosa to maintain a neutral pH at the epithelial cell surface. This could be due to the thinner inner, firmly adherent mucus gel layer, and/or to defective bicarbonate transport across the epithelium. The Cl<sup>-</sup>/HCO<sub>3</sub><sup>-</sup> exchanger SLC26A9 was inhibited by NH<sub>4</sub><sup>+</sup>, which also is produced by <i>H. pylori</i>. The mRNA levels of SLC26A9 were upregulated in infected mice, suggesting a way to overcome the inhibition of the transporter. Furthermore, the hyperemic response to acid pH 2 and 1.5 was abolished in these mice. The mechanisms by which the bacteria could alter the blood flow response might involve inhibition of the epithelial iNOS.</p><p>Water extracts of <i>H. pylori </i>(HPE) reduces the blood flow acutely through an iNOS and nerve-mediated pathway, possibly through the endogenous iNOS inhibitor ADMA. Furthermore, HPE alters the blood flow response to acid as the hyperemic response to acid pH 0.8 is accentuated in mice treated with HPE. </p>
4

Helicobacter pylori and Gastric Protection Mechanisms : An in vivo Study in Mice and Rats

Henriksnäs, Johanna January 2005 (has links)
The stomach is frequently exposed to hazardous agents and to resist this harsh environment, several protective mechanisms exist. Of special interest is the gastric pathogen Helicobacter pylori which causes gastritis, ulcers and cancer but the mechanism leading to these diseases are still unclear. However it is very likely that H. pylori negatively influence the protection mechanisms that exist in the stomach. The aims of the present investigation were first to develop an in vivo mouse model in which different protection mechanisms could be studied, and second to investigate the influence of H. pylori on these mechanisms. An in vivo preparation of the gastric mucosa in mice was developed. This preparation allows studies of different gastric mucosal variables and can also be applied for studies in other gastro-intestinal organs. Mice chronically infected with H. pylori, were shown to have a reduced ability of the mucosa to maintain a neutral pH at the epithelial cell surface. This could be due to the thinner inner, firmly adherent mucus gel layer, and/or to defective bicarbonate transport across the epithelium. The Cl-/HCO3- exchanger SLC26A9 was inhibited by NH4+, which also is produced by H. pylori. The mRNA levels of SLC26A9 were upregulated in infected mice, suggesting a way to overcome the inhibition of the transporter. Furthermore, the hyperemic response to acid pH 2 and 1.5 was abolished in these mice. The mechanisms by which the bacteria could alter the blood flow response might involve inhibition of the epithelial iNOS. Water extracts of H. pylori (HPE) reduces the blood flow acutely through an iNOS and nerve-mediated pathway, possibly through the endogenous iNOS inhibitor ADMA. Furthermore, HPE alters the blood flow response to acid as the hyperemic response to acid pH 0.8 is accentuated in mice treated with HPE.

Page generated in 0.0804 seconds