1 |
RNA Homology Searches Using Pair SeedingDarbha, Sriram January 2005 (has links)
Due to increasing numbers of non-coding RNA (ncRNA) being discovered recently, there is interest in identifying homologs of a given structured RNA sequence. Exhaustive homology searching for structured RNA molecules using covariance models is infeasible on genome-length sequences. Hence, heuristic methods are employed, but they largely ignore structural information in the query. We present a novel method, which uses secondary structure information, to perform homology searches for a structured RNA molecule. We define the concept of a <em>pair seed</em> and theoretically model alignments of random and related paired regions to compute expected sensitivity and specificity. We show that our method gives theoretical gains in sensitivity and specificity compared to a BLAST-based heuristic approach. We provide experimental verification of this gain. <br /><br /> We also show that pair seeds can be effectively combined with the spaced seeds approach to nucleotide homology search. The hybrid search method has theoretical specificity superior to that of the BLAST seed. We provide experimental evaluation of our hypotheses. Finally, we note that our method is easily modified to process pseudo-knotted regions in the query, something outside the scope of covariance model based methods.
|
2 |
RNA Homology Searches Using Pair SeedingDarbha, Sriram January 2005 (has links)
Due to increasing numbers of non-coding RNA (ncRNA) being discovered recently, there is interest in identifying homologs of a given structured RNA sequence. Exhaustive homology searching for structured RNA molecules using covariance models is infeasible on genome-length sequences. Hence, heuristic methods are employed, but they largely ignore structural information in the query. We present a novel method, which uses secondary structure information, to perform homology searches for a structured RNA molecule. We define the concept of a <em>pair seed</em> and theoretically model alignments of random and related paired regions to compute expected sensitivity and specificity. We show that our method gives theoretical gains in sensitivity and specificity compared to a BLAST-based heuristic approach. We provide experimental verification of this gain. <br /><br /> We also show that pair seeds can be effectively combined with the spaced seeds approach to nucleotide homology search. The hybrid search method has theoretical specificity superior to that of the BLAST seed. We provide experimental evaluation of our hypotheses. Finally, we note that our method is easily modified to process pseudo-knotted regions in the query, something outside the scope of covariance model based methods.
|
3 |
Parallel Algorithm for Memory Efficient Pairwise and Multiple Genome Alignment in Distributed EnvironmentAhmed, Nova 20 December 2004 (has links)
The genome sequence alignment problems are very important ones from the computational biology perspective. These problems deal with large amount of data which is memory intensive as well as computation intensive. In the literature, two separate algorithms have been studied and improved – one is a Pairwise sequence alignment algorithm which aligns pairs of genome sequences with memory reduction and parallelism for the computation and the other one is the multiple sequence alignment algorithm that aligns multiple genome sequences and this algorithm is also parallelized efficiently so that the workload of the alignment program is well distributed. The parallel applications can be launched on different environments where shared memory is very well suited for these kinds of applications. But shared memory environment has the limitation of memory usage as well as scalability also these machines are very costly. A better approach is to use the cluster of computers and the cluster environment can be further enhanced to a grid environment so that the scalability can be improved introducing multiple clusters. Here the grid environment is studied as well as the shared memory and cluster environment for the two applications. It can be stated that for carefully designed algorithms the grid environment is comparable for its performance to other distributed environments and it sometimes outperforms the others in terms of the limitations of resources the other distributed environments have.
|
Page generated in 0.0997 seconds