• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 11
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Upper Palaeozoic successions and structures between Buckfastleigh and Ivybridge, South Devon

Willcock, A. D. January 1981 (has links)
No description available.
2

Major evolutionary trends

Hughes, Martin January 2013 (has links)
Palaeontological data are essential for determining patterns of biological diversity through geological time, enabling the investigation of important macroevolutionary events such as mass extinctions and explosive radiations. Most studies utilise proxies of taxonomic diversity. A more complex undertaking is to assess patterns of morphological variety (disparity) through time, revealing the manner in which groups evolved through their ‘design space’. Many published studies indicate clades tend to reach their maximum disparity early in their evolutionary history. Whether this is a real biological pattern has yet to be tested. Chapter 1 tackles the evolution of disparity in metazoans across the Phanerozoic. The results of a meta-analysis of disparity in 98 extinct clades indicate early high disparity is the most prevalent pattern across the Phanerozoic but finds no clear trends through the Phanerozoic. Mass extinction ended clades were the exception, tending to result in late high disparity. Chapters 2-4 focus on the clade Bivalvia for disparity and diversity analysis. Bivalves are ecologically and taxonomically diverse and have an excellent fossil record but have not been scrutinised using the latest diversity techniques, and have been untouched by disparity analysis. Chapter 2 uses the most up to date stratigraphic ranges and techniques to revise the bivalve Phanerozoic diversity curve. The results show bivalve Phanerozoic diversity is robust to the sampling and fossil record biases examined. Chapter 3 uses data provided as part of collaboration between Martin Hughes, Dr Joseph Carter (University of North Carolina) and Dr Matthew Wills (University of Bath) to address the disparity of bivalves across the Palaeozoic. The results find disparity rises across time but not decreased by mass extinctions. Chapter 4 conducts the first large scale analysis of disparity across latitude. The results find that bivalve disparity across latitude is unchanging and stable compared to the steep gradient of bivalve diversity.
3

Shell repair as a response to attempted predation in some Palaeozoic and younger gastropods

Lindström, Anna January 2005 (has links)
<p>Traces of unsuccessful predatory attacks can be found in the hard parts of shell-bearing organisms as repaired shell injuries and are often preserved in the fossil record. These repaired shell injuries can help to deduce the relationship between predator and prey in the past. Gastropods afford an excellent opportunity for study since their shells are easily recognized from the Cambrian onwards, and usually preserve a full record of their life history. Predation is a phenomenon which has led to a great variety of adaptations among prey organisms in their quest to avoid being eaten. Increased predation pressure seems to have been one of the factors that has fueled the evolution of predation-resistant shell morphologies.</p><p>Individual case studies examine the frequency of shell repair in assemblages of Palaeozoic gastropods from different geological periods. The Silurian species <i>Poleumita discors</i> showed a shell repair frequency of 10 %, while only 4 % of the Devonian species <i>Praenatica gregaria</i> have been repaired. The Palaeozoic bilaterally symmetrical bellorphontiform molluscs also showed low levels of shell repair.</p><p>Similar shell morphologies in the long-lived group of pleurotomarioid gastropods were examined and shell repair frequenceis calculated to investigate potential variation through geological time. The Palaeozoic species showed repair frequencies of 17.1 % and 4.2 %. The frequency increased in the Mesozoic to between 28.8 % and 46.6 %, while all shells of Recent pleurotomarioids in the study showed repaired injuries. The repaired injuries found do not change in appearance through time, which is probably a reflection of the presence of the slit in the apertural margin. Which type of injury is the most abundant can be seen to change with time, and there is also an increase in size with time. This may be a defensive strategy taken up by the pleurotomarioids as a response to more abundant predators.</p>
4

Shell repair as a response to attempted predation in some Palaeozoic and younger gastropods

Lindström, Anna January 2005 (has links)
Traces of unsuccessful predatory attacks can be found in the hard parts of shell-bearing organisms as repaired shell injuries and are often preserved in the fossil record. These repaired shell injuries can help to deduce the relationship between predator and prey in the past. Gastropods afford an excellent opportunity for study since their shells are easily recognized from the Cambrian onwards, and usually preserve a full record of their life history. Predation is a phenomenon which has led to a great variety of adaptations among prey organisms in their quest to avoid being eaten. Increased predation pressure seems to have been one of the factors that has fueled the evolution of predation-resistant shell morphologies. Individual case studies examine the frequency of shell repair in assemblages of Palaeozoic gastropods from different geological periods. The Silurian species Poleumita discors showed a shell repair frequency of 10 %, while only 4 % of the Devonian species Praenatica gregaria have been repaired. The Palaeozoic bilaterally symmetrical bellorphontiform molluscs also showed low levels of shell repair. Similar shell morphologies in the long-lived group of pleurotomarioid gastropods were examined and shell repair frequenceis calculated to investigate potential variation through geological time. The Palaeozoic species showed repair frequencies of 17.1 % and 4.2 %. The frequency increased in the Mesozoic to between 28.8 % and 46.6 %, while all shells of Recent pleurotomarioids in the study showed repaired injuries. The repaired injuries found do not change in appearance through time, which is probably a reflection of the presence of the slit in the apertural margin. Which type of injury is the most abundant can be seen to change with time, and there is also an increase in size with time. This may be a defensive strategy taken up by the pleurotomarioids as a response to more abundant predators.
5

Morfologie a evoluce vybraných skupin Palaeodictyopterida (Insecta: Palaeoptera) / Morphology and evolution of selected groups of Palaeodictyopterida (Insecta: Palaeoptera)

Pecharová, Martina January 2017 (has links)
Palaeodictyopterida is remarkable insect superorder, which formed a significant part of the diversity of upper Palaeozoic insects, but disappeared by the end of the Permian. The main synapomorphy of the superorder is the piercing-sucking mouthparts in the form of a rostrum consisting of five styles. This rostrum was probably used to pierce on plant tissue and for the juice sucking. The same type of mouthparts shared by adults was present also in larvae of Palaeodictyopterida. The external copulatory organs of the superorder members was also showed some morphological interests. The male genitalia consist of a pair of gonostyli and two penial lobes, similarly to the genitalia of recent Ephemeroptera. The female genitalia of Palaeodictyopterida are developed in a form of the ovipositor that can be compared with the endophytic ovipositor of some recent Odonata. This morphological features support placement of Palaeodictyopterida as sister group of Odonatoptera + Panephemeroptera. The main aim of the work was to describe new representatives of the order Megasecoptera, the second largest group of Palaeodictyopterida. Wing venation of Megasecoptera exhibits a reduction of the longitudinal and transverse veins in comparison with the order Palaeodictyoptera. Other body structures were examined mainly in the...
6

Ichnofosilie spodního paleozoika Železných hor / Ichnofossils from the Lower Palaeozoic of the Železné hory Mts.

Doucek, Jan January 2010 (has links)
On five key sites of the Lower Palaeozoic of the Železné hory Mountains (Bačalský rybník, Bačalský mlýn, Palác, Rabštejn and Deblov) the detailed research involving the compilation of schematic lithostratigraphic profiles (exluding site Deblov) was conducted. Individuals of ichnotaxa Zoophycos that have maximum Middle Cambrian age were described on the site Palác. This is the third oldest finding in the world. Ichnotaxa Zoophycos was further described on the site Bačalský rybník, where they are exposed quartz siltstones, the equivalent of the Dobrotiv of the Barrandian area. Ichnofossils abundant in the study area are Skolithos, Pragichnus, to a lesser extend Phycodes and Monocraterion. Skolithos on the site Rabštejn occurs in extreme size (until 90 cm). On the site Deblov community of Skolitos ichnofacies on the area measuring hundreds of square meters were described. There was also performed ichnological imaging which showed proportional representation of each ichnotaxa. Study samples for microprobe showed differences in structure and chemistry of ichnofabrics up filling and surrounding environment.
7

Geobiological Impacts of PalaeozoicLand Plant Evolution / Geobiologiska effekter av paleozoisk landväxtutveckling

Valette, Camille January 2021 (has links)
For two centuries, questions about the origin of terrestrial plants and their impacts on the Earth systemhave occupied palaeobotanists. This essay attempts to synthesise the state of research to date, and outlineareas where major questions remain. Fossil evidence for land plants first appears in rocks of MiddleOrdovician age (~ 470 Ma), but it was not until the Devonian that vascular plants became the dominantgeobiological agents on the continents. Plants began as small organisms, lacking any vascular tissues,and essentially confined to wetlands. Key developments in their reproductive biology and the evolutionof mycorrhizal symbiosis subsequently enabled early plants to exploit a broader range of environments,enhancing water uptake and absorption of nutrients. In turn, the evolution of plant roots has significantlyimpacted terrestrial landscapes. The Devonian rise of plants led to a modification of the weathering rateand a sharp increase in the rate of mudrock production. This was driven by the impacts that plants exerted on watercourses, with the creation of meandering rivers and deltas that retained fine siliciclasticmaterials. This increase in weathering rate, combined with the development of leaves and the intensification of photosynthesis also had consequences for the carbon cycle and atmosphere, reducing the levelof CO2 and increasing that of O2 in the atmosphere. The increased proportion of oxygen and creation ofcombustible material is also thought to have led to the planets first wildfires, whilst the decrease in CO2lowered global temperatures. Via a complex set of feedbacks, these modifications may even have drivena series of anoxic events in the oceans, generating one of the five major mass extinctions at the end ofthe Devonian. / Paleobotanik är studien om fossiliserade växter. Då växter ursprungligen först saknades från jordens ytahar deras utveckling och kolonisering av kontinenterna (för 450 miljoner år sedan) haft många effekter.Ursprungligen var de första landväxter små och liknande modernt gräs. Deras små rötter begränsadedem till närvaron av vattenkällor (hav, flod, träsk…). En symbios med svampen (kallad mykorrhizalsymbios) underlättade landväxtens upptag av näring samt utvecklingen av djupare rötter, vilket ocksåunderlättade deras upptag av vatten. Då landväxter nu kunde migrera till torrare landskap har antaletlandväxter ökat med tiden. Det växande antalet landväxter var viktigt för bildningen av exempelvis kol,vilket är slutprodukten av dött växtmaterial som begravts och utsatts för höga tryck och temperaturförhållanden. Den geologiska perioden Karbon (359–299 miljoner år sedan) namngavs tack vare av denenorma andelen kol som kan dateras tillbaka till denna tid. Genom fotosyntes kan växter även absorbera CO2 och frigöra syre, och på så vis förändra atmosfärenssammansättning. På grund av högre syrehalter i atmosfären blev bränder ett allt vanligare fenomen eftersom det försågs med växter och syre som bränsle, som i sin tur även förbättrade bevarandet av frönoch växtvävnader i form av träkol. Oavsett om det är växtens frigöring av syre, minskning av CO2 (som är en växthusgas) eller genombränder, har uppkomst av landväxter haft en stor inverkan på atmosfärens sammansättning, och därföräven klimatet. På grund av en hastig nedgång av temperatur och syrehalt i haven mellan 450–375 miljoner år sedan (från 40 till 25 °C), utrotades nästan 75% av allt djurliv. Upphovet av denna massutrotning, genom försämringen av vattenkvalité, och uppkomsten av syrefritt vattenmiljöer tros bero på näringsläckage av jordar orsakat av ett ökat tillstånd av alger som spreds i samband med landväxters rotutveckling.
8

Mécanismes et évolution des chaînes d'accrétion : exemple des chaînes paléozoïques d'Asie Centrale (Ouest Junggar, N-O de la Chine) / Mechanisms and evolution of accretionary orogens : new insights from Palaeozoic belts of Central Asia (West Junggar, NW China)

Choulet, Flavien 12 December 2011 (has links)
Les chaînes d’accrétion se développent au niveau des zones de subduction océanique et contribuent à la croissance de la croûte continentale. En Asie Centrale, le collage tectonique des Altaïdes comprend de nombreuses chaînes d’accrétion à l’origine de la formation de la croûte continentale asiatique au Paléozoïque. Basé sur l’approche combinée de données géochimiques, géochronologiques, paléomagnétiques et structurales, ce travail permet de caractériser l’architecture d’une chaîne d’accrétion (Junggar Occidental, nord-ouest Chine) et de déchiffrer les étapes de la croissance de la croûte continentale en Asie Centrale. L’étude des zircons détritiques indique une évolution géodynamique polycyclique du Junggar occidental. Le recyclage continu de la croûte juvénile accompagne le transfert épisodique de magmas mantelliques dans la croûte. Ces résultats suggèrent un contrôle de la croissance crustale par la géodynamique régionale. Le cycle paléozoïque inférieur correspond à la fermeture de deux domaines océaniques bordant des arcs intra-océaniques. La tectonique de nappes, la sédimentation syn-tectonique et le magmatisme alcalin intra-plaque caractérisent les collisions successives d’arc et de microcontinent à l’origine de l’arrêt de la subduction au Dévonien inférieur. La subduction des océans Ob-Zaisan au nord et Junggar-Balkash au sud entraîne le développement, de deux marges continentales actives au Dévonien moyen. L’accrétion de matériaux océaniques et terrigènes contribue à l’expansion des complexes d’accrétion. La formation de la virgation kazakh au Paléozoïque supérieur conduit à la subduction oblique de l’Océan Junggar-Balkash. Une déformation transpressive, marquée par des plis à axes verticaux affecte alors le complexe d’accrétion du Junggar Occidental. L’augmentation de la courbure de la virgation est à l’origine de décrochements qui accommodent le transport latéral des unités accrétées. Les rotations relatives entre les différents blocs se poursuivent au Mésozoïque suite à la réactivation intracontinentale de la chaîne. / Accretionary orogens develop at sites of oceanic subduction and they largely contribute to continentalcrust growth. The Altaids tectonic collage covers the whole Central Asia, exposing numerousaccretionary orogens that can account for the Palaeozoic continental crust growth. Multidisciplinaryapproach, using geochronological, geochemical, structural and palaeomagnetic tools was carried out toreveal the architecture of a past accretionary belt (West Junggar, Northwestern China) and to decipher thetiming of continental crust growth in Central Asia. A polycyclic geodynamical evolution is inferred from thedetrital zircon studies and field observation. Continuous recycling of the Palaeozoic juvenile crust is coevalwith episodic addition of mantle-derived materials into the crust and this supports a geodynamic control ofthe continental crust growth. The Early Palaeozoic cycle is characterized by the closure of two oceanicdomains bounding island-arc systems. Early Devonian subduction jamming results from the successivecollisions of an island arc and a microcontinent, which are documented by thrusting, sedimentation coevalwith tectonics and alkaline intraplate magmatism. From Middle Devonian, two active continental marginsdeveloped upon the Early Palaeozoic basement, in response to the subductions of Ob-Zaisan Ocean, to thenorth and Junggar-Balkash Ocean, to the south. Accretionary complexes growth results from the accretion ofoceanic and terrigenous materials. Development of the Late Palaeozoic Kazakh orocline led to obliquesubduction of the Junggar-Balkash Ocean. Consequently, transpression affected the West Junggaraccretionary complex as indicated by folds with vertical axes. Progressive buckling of the orocline gives riseto Late Carboniferous to Permian strike-slip faults, which accommodate lateral unit transport. Relativerotations of the blocs continue after Late Triassic, due to diachronous intraplate reactivation.
9

The Late Proterozoic to Palaeozoic Tectonic Evolution of the Long Range Mountains in Southwestern Newfoundland

Brem, Arjan Gerben January 2007 (has links)
Ever since the first plate-tectonic model for the Appalachians was proposed, the Laurentian margin has been interpreted as having experienced a collision-related dynamo-thermal event during the Middle Ordovician Taconic orogeny. In the western Newfoundland Appalachians, evidence for this collision is well-preserved in the Dashwoods subzone. Nevertheless, rocks of the neighbouring Corner Brook Lake block (CBLB), which is located in the heart of the Laurentian realm, did not show evidence for such an event. Instead, it was affected by Early Silurian Salinic deformation and associated peak metamorphism. Even though this difference in Early Palaeozoic tectonic history between the Dashwoods and the CBLB is widely known, it has not been satisfactorily explained. To better understand the Early Palaeozoic history of the region, in particular to test and better explain the lack of a Taconic dynamo-thermal event in the CBLB, field mapping, microscopic work, and U-Pb and 40Ar/39Ar geochronological studies were undertaken in the western and northern part of the Dashwoods subzone, and in the southern part of the CBLB. In addition, the kinematic history of the Baie Verte-Brompton Line - Cabot Fault Zone (BCZ), the tectonic zone that separates the two unique tectonic fragments, was studied. The western and northern parts of the Dashwoods subzone contain variably foliated igneous units of Middle Ordovician age (ca. 460 Ma) that are associated with the regionally voluminous Notre Dame continental arc. A ca. 455 Ma conjugate set of late syn-tectonic pegmatite dykes in the BCZ demonstrates a dextral sense of shear along the BCZ (DBCZ-1) during the Late Ordovician to earliest Silurian, and constrains the minimum age of the main phase of ductile deformation in the Dashwoods subzone. The fault-bounded CBLB has been affected by a single west-vergent deformational event, constrained between ca. 434 and ca. 427 Ma. More importantly, no evidence – neither petrographic nor geochronological – is present that would indicate that the CBLB was affected by a significant Taconic dynamo-thermal event. Hence, the CBLB and Dashwoods could not have been juxtaposed until after the late Early Silurian. Furthermore, the basement to the CBLB is devoid of any Grenville (sensu lato; ca. 1.0-1.3 Ga) U-Pb ages, which is in sharp contrast with crystalline basement elsewhere in the region, such as the Long Range Inlier. Therefore, it is highly unlikely that the CBLB represents the para-autochthonous leading edge of the Laurentian craton in the Newfoundland Appalachians, as commonly accepted. The CBLB is interpreted as a suspect terrane that has moved over 500 km parallel to the strike of the orogen. Docking to the external Humber Zone is likely to have occurred during the Early Silurian. Final juxtaposition with the Dashwoods took place after the late Early Silurian (post-Salinic) as a result of protracted dextral movement along the BCZ (DBCZ-2 and DBCZ-5). Current tectonic models for the Newfoundland Appalachians mainly focus on well-documented Early Palaeozoic orthogonal convergence of various terranes with the Laurentian margin, but large-scale orogen-parallel movements have rarely been considered. The possibility of large-scale strike-slip tectonics documented here, in addition to the convergent motions, may have significant implications for the tectonic interpretation of the Early Palaeozoic evolution of the Newfoundland Appalachians.
10

The Late Proterozoic to Palaeozoic Tectonic Evolution of the Long Range Mountains in Southwestern Newfoundland

Brem, Arjan Gerben January 2007 (has links)
Ever since the first plate-tectonic model for the Appalachians was proposed, the Laurentian margin has been interpreted as having experienced a collision-related dynamo-thermal event during the Middle Ordovician Taconic orogeny. In the western Newfoundland Appalachians, evidence for this collision is well-preserved in the Dashwoods subzone. Nevertheless, rocks of the neighbouring Corner Brook Lake block (CBLB), which is located in the heart of the Laurentian realm, did not show evidence for such an event. Instead, it was affected by Early Silurian Salinic deformation and associated peak metamorphism. Even though this difference in Early Palaeozoic tectonic history between the Dashwoods and the CBLB is widely known, it has not been satisfactorily explained. To better understand the Early Palaeozoic history of the region, in particular to test and better explain the lack of a Taconic dynamo-thermal event in the CBLB, field mapping, microscopic work, and U-Pb and 40Ar/39Ar geochronological studies were undertaken in the western and northern part of the Dashwoods subzone, and in the southern part of the CBLB. In addition, the kinematic history of the Baie Verte-Brompton Line - Cabot Fault Zone (BCZ), the tectonic zone that separates the two unique tectonic fragments, was studied. The western and northern parts of the Dashwoods subzone contain variably foliated igneous units of Middle Ordovician age (ca. 460 Ma) that are associated with the regionally voluminous Notre Dame continental arc. A ca. 455 Ma conjugate set of late syn-tectonic pegmatite dykes in the BCZ demonstrates a dextral sense of shear along the BCZ (DBCZ-1) during the Late Ordovician to earliest Silurian, and constrains the minimum age of the main phase of ductile deformation in the Dashwoods subzone. The fault-bounded CBLB has been affected by a single west-vergent deformational event, constrained between ca. 434 and ca. 427 Ma. More importantly, no evidence – neither petrographic nor geochronological – is present that would indicate that the CBLB was affected by a significant Taconic dynamo-thermal event. Hence, the CBLB and Dashwoods could not have been juxtaposed until after the late Early Silurian. Furthermore, the basement to the CBLB is devoid of any Grenville (sensu lato; ca. 1.0-1.3 Ga) U-Pb ages, which is in sharp contrast with crystalline basement elsewhere in the region, such as the Long Range Inlier. Therefore, it is highly unlikely that the CBLB represents the para-autochthonous leading edge of the Laurentian craton in the Newfoundland Appalachians, as commonly accepted. The CBLB is interpreted as a suspect terrane that has moved over 500 km parallel to the strike of the orogen. Docking to the external Humber Zone is likely to have occurred during the Early Silurian. Final juxtaposition with the Dashwoods took place after the late Early Silurian (post-Salinic) as a result of protracted dextral movement along the BCZ (DBCZ-2 and DBCZ-5). Current tectonic models for the Newfoundland Appalachians mainly focus on well-documented Early Palaeozoic orthogonal convergence of various terranes with the Laurentian margin, but large-scale orogen-parallel movements have rarely been considered. The possibility of large-scale strike-slip tectonics documented here, in addition to the convergent motions, may have significant implications for the tectonic interpretation of the Early Palaeozoic evolution of the Newfoundland Appalachians.

Page generated in 0.0795 seconds